\qquad

1) Multiply the matrices below. (10 points)

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
-2 & 1 & 3 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
4 & 3 & 5 \\
3 & -1 & 3 \\
-1 & 2 & 1
\end{array}\right]
$$

2) Find the null space of the matrix below. (10 points)

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & -2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3) Row reduce the matrix below. (10 points)

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
-2 & -4 & 3 \\
1 & 2 & 1
\end{array}\right]
$$

4) Consider a 4×6 matrix A that has 3 pivots. (2 points each)
(A) How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
(B) How many free variables does the equation $A \vec{x}=\overrightarrow{0}$ have?
(C) If $A \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 7\end{array}\right]$ has no solutions, how many solutions does it have?
(D) If $A \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 7\end{array}\right]$ has a solution, how many solutions does it have?
(E) Does A have an inverse? True or false.
5) Find the inverse of the matrix below. (10 points)
$\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 3 \\ 0 & 1 & 3\end{array}\right]$
6) Find the product below. (5 points)

$$
\left[\begin{array}{llllll}
1 & 2 & 0 & 0 & 0 & 0 \\
5 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 3 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

7) Determine whether or not the vectors below are orthogonal. Justify your answer. (5 points)
$\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right]$
8) Below is a matrix equation. Write down the corresponding system of homogeneous equations. (5 points)

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 7
\end{array}\right]
$$

9) Use the formula $\|\vec{v}\| \cdot\|\vec{w}\| \cdot \cos (\theta)=\vec{v} \bullet \vec{w}$ to find the angle between the two vectors below. You do not need to simplify your answer. (5 points)
$\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{c}-2 \\ 5 \\ 0\end{array}\right]$
10) Given the two vectors below, find $2 \vec{v}-3 \vec{w}$. (5 points)

$$
\vec{v}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right], \vec{w}=\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right]
$$

11) Find $\vec{v}^{T} \vec{w}$, given the two vectors below. (5 points)

$$
\vec{v}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right], \vec{w}=\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right]
$$

12) Given the information below, solve $A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]_{(5 \text { points })}$

$$
A=\left[\begin{array}{ccc}
4 & 5 & -4 \\
2 & 4 & -3 \\
-1 & -1 & 1
\end{array}\right], A^{-1}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 4 \\
2 & -1 & 6
\end{array}\right]
$$

13) Find the length of the vector below. (5 points)
14) Graphically illustrate the solution to the system of equations below. (5 points)

$$
\begin{aligned}
& 2 x+y=4 \\
& 3 x-y=5
\end{aligned}
$$

15) Find the transpose of the matrix below. (5 points)

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 8 \\
3 & 4 & 5 & 0 \\
1 & 0 & 2 & 1
\end{array}\right]
$$

