1) Multiply the matrices below. (10 points)

$$\begin{bmatrix} 1 & 2 & 4 \\ -2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & 5 \\ 3 & -1 & 3 \\ -1 & 2 & 1 \end{bmatrix}$$

2) Find the null space of the matrix below. (10 points)

$$\begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3) Row reduce the matrix below. (10 points)

$$\begin{bmatrix} 1 & 2 & 4 \\ -2 & -4 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

4) Consider a  $4 \times 6$  matrix A that has 3 pivots. (2 points each)

(A) How many solutions does  $A\vec{x} = \vec{0}$  have?

(B) How many free variables does the equation  $A\vec{x} = \vec{0}$  have?

(C) If 
$$A\vec{x} = \begin{bmatrix} 1\\1\\1\\7 \end{bmatrix}$$
 has no solutions, how many solutions does it have?

(D) If 
$$A\vec{x} = \begin{bmatrix} 1\\1\\1\\7 \end{bmatrix}$$
 has a solution, how many solutions does it have?

(E) Does *A* have an inverse? True or false.

5) Find the inverse of the matrix below. (10 points)

| ſ1 | 2 | 1] |
|----|---|----|
| 1  | 3 | 3  |
| Lo | 1 | 3] |

6) Find the product below. (5 points)

| ٢1 | 2 | 0 | 0 | 0 | זך0  | 1  | 2 | 0 | 0 | 0  | ך0 |
|----|---|---|---|---|------|----|---|---|---|----|----|
| 5  | 4 | 0 | 0 | 0 | 0    | 3  | 4 | 0 | 0 | 0  | 0  |
| 0  | 0 | 2 | 1 | 0 | 0    | 0  | 0 | 2 | 3 | 0  | 0  |
| 0  | 0 | 1 | 2 | 0 | 0    | 0  | 0 | 1 | 2 | 0  | 0  |
| 0  | 0 | 0 | 0 | 1 | 6    | 0  | 0 | 0 | 0 | 4  | 5  |
| LO | 0 | 0 | 0 | 1 | ال_2 | -0 | 0 | 0 | 0 | -1 | 2  |

7) Determine whether or not the vectors below are orthogonal. Justify your answer. (5 points)

| [2] |   | [—] | 31 |
|-----|---|-----|----|
| 0   | , | 2   |    |
| [3] |   | l 1 | ]  |

8) Below is a matrix equation. Write down the corresponding system of homogeneous equations. (5 points)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 0 & 7 \end{bmatrix}$$

9) Use the formula  $\|\vec{v}\| \cdot \|\vec{w}\| \cdot \cos(\theta) = \vec{v} \cdot \vec{w}$  to find the angle between the two vectors below. You do not need to simplify your answer. (5 points)

| [3] |   | [-2 |  |
|-----|---|-----|--|
| 1   | , | 5   |  |
| 4   |   | L 0 |  |

10) Given the two vectors below, find  $2\vec{v} - 3\vec{w}$ . (5 points)

$$\vec{v} = \begin{bmatrix} 3\\1\\4 \end{bmatrix}, \vec{w} = \begin{bmatrix} -2\\5\\0 \end{bmatrix}$$

11) Find  $\vec{v}^T \vec{w}$ , given the two vectors below. (5 points)

$$\vec{v} = \begin{bmatrix} 3\\1\\4 \end{bmatrix}, \vec{w} = \begin{bmatrix} -2\\5\\0 \end{bmatrix}$$

12) Given the information below, solve 
$$A\vec{x} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$
 (5 points)  
$$A = \begin{bmatrix} 4 & 5 & -4\\2 & 4 & -3\\-1 & -1 & 1 \end{bmatrix}, A^{-1} = \begin{bmatrix} 1 & -1 & 1\\1 & 0 & 4\\2 & -1 & 6 \end{bmatrix}$$

13) Find the length of the vector below. (5 points)

 $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 5 \end{bmatrix}$ 

14) Graphically illustrate the solution to the system of equations below. (5 points)



15) Find the transpose of the matrix below. (5 points)

| [1    | 0 | 2 | 8] |
|-------|---|---|----|
| 3     | 4 | 5 | 0  |
| $l_1$ | 0 | 2 | 1  |