\qquad

1) Multiply the matrices below. (10 points)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 2 & 4 \\
-2 & 1 & 3 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
4 & 3 & 5 \\
3 & -1 & 3 \\
-1 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc}
6 & 9 & 15 \\
-8 & -1 & -4 \\
9 & 3 & 12
\end{array}\right]}
\end{gathered}
$$

2) Find the null space of the matrix below. (10 points)

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & -2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{2} and x_{4} are free. The two equations from the homogeneous system of equations give us:

$$
\begin{gathered}
x_{1}+2 x_{2}-2 x_{4}=0 \\
x_{3}+4 x_{4}=0
\end{gathered}
$$

So the solution set, which is the null space of the matrix is:

$$
\left\{\left[\begin{array}{c}
-2 x_{2}+2 x_{4} \\
x_{2} \\
-4 x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right] x_{2}+\left[\begin{array}{c}
2 \\
0 \\
-4 \\
1
\end{array}\right] x_{4}: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

3) Row reduce the matrix below. (10 points)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 2 & 4 \\
-2 & -4 & 3 \\
1 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 2 & 4 \\
-2 & -4 & 3 \\
1 & 2 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & 11 \\
0 & 0 & -3
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & 1 \\
0 & 0 & -3
\end{array}\right] \sim_{R}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
R_{2} \rightarrow R_{2}+2 R_{1} \quad R_{2} \rightarrow \frac{1}{11} R_{2} \\
R_{1} \rightarrow R_{1}-4 R_{2} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{gathered} \quad \begin{array}{ll}
R_{3} \rightarrow R_{3}+3 R_{1}
\end{array}
$$

4) Consider a 4×6 matrix A that has 3 pivots. (2 points each)
(A) How many solutions does $A \vec{x}=\overrightarrow{0}$ have?

Infinitely many, because there is a free variable.

(B) How many free variables does the equation $A \vec{x}=\overrightarrow{0}$ have?

Thee free variables, because there are 6 columns each corresponding to one variable. Three of the variables are leading, given by the pivots. The rest are free.

(C) If $A \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 7\end{array}\right]$ has no solutions, how many solutions does it have?

There are no solutions ... because, well ... there are no solutions.

(D) If $A \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 7\end{array}\right]$ has a solution, how many solutions does it have?

There are infinitely many solutions, because as soon as there are multiple, there is an entire vector space of solutions.

Question 4d r=-0.178

(E) Does A have an inverse? True or false.

No, it is not square. Only square matrices can have inverses.

5) Find the inverse of the matrix below. (10 points)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 3 & 3 \\
0 & 1 & 3
\end{array}\right]}
\end{aligned}
$$

The inverse matrix is:

$$
\left[\begin{array}{ccc}
6 & -5 & 3 \\
-3 & 3 & -2 \\
1 & -1 & 1
\end{array}\right]
$$

6) Find the product below. (5 points)

$$
\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & 0 & 0 \\
5 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 3 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
7 & 10 & 0 & 0 & 0 & 0 \\
17 & 26 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 8 & 0 & 0 \\
0 & 0 & 4 & 7 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 17 \\
0 & 0 & 0 & 0 & 2 & 9
\end{array}\right]
$$

7) Determine whether or not the vectors below are orthogonal. Justify your answer. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]=-6+0+3=-3 \neq 0}
\end{gathered}
$$

They are not orthogonal because the dot product is nonzero.

Question 7 r=0.406

8) Below is a matrix equation. Write down the corresponding system of homogeneous equations. (5 points)

$$
\begin{array}{r}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 7
\end{array}\right]} \\
x_{1}+2 x_{2}+3 x_{3}=0 \\
4 x_{1}+7 x_{3}=0
\end{array}
$$

***Whoops, that's actually just a matrix not a matrix equation. Because of the duality, you were still able to solve the problem with the information given. However, if you noticed this issue, 3 bonus points were awarded.
9) Use the formula $\|\vec{v}\| \cdot\|\vec{w}\| \cdot \cos (\theta)=\vec{v} \bullet \vec{w}$ to find the angle between the two vectors below. You do not need to simplify your answer. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right],\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right]} \\
\cos ^{-1}\left(\frac{-6+5}{\sqrt{9+1+16} \sqrt{4+25}}\right)
\end{gathered}
$$

10) Given the two vectors below, find $2 \vec{v}-3 \vec{w}$. (5 points)

$$
\begin{gathered}
\vec{v}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right], \vec{w}=\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right] \\
2 \vec{v}-3 \vec{w}=2\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]-3\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right]=\left[\begin{array}{c}
6 \\
2 \\
8
\end{array}\right]-\left[\begin{array}{c}
-6 \\
15 \\
0
\end{array}\right]=\left[\begin{array}{c}
12 \\
-13 \\
8
\end{array}\right]
\end{gathered}
$$

11) Find $\vec{v}^{T} \vec{w}$, given the two vectors below. (5 points)

$$
\begin{gathered}
\vec{v}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right], \vec{w}=\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right] \\
{\left[\begin{array}{lll}
3 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right]=[-6+5+0]=[-1]}
\end{gathered}
$$

A 1×1 matrix can be treated as a number, so full credit is given for just -1 .

12) Given the information below, solve $A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right.$ (5 points)

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
4 & 5 & -4 \\
2 & 4 & -3 \\
-1 & -1 & 1
\end{array}\right], A^{-1}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 4 \\
2 & -1 & 6
\end{array}\right] \\
\vec{x}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 4 \\
2 & -1 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
3 \\
9 \\
14
\end{array}\right]
\end{gathered}
$$

13) Find the length of the vector below. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
2 \\
0 \\
5
\end{array}\right]} \\
\sqrt{1^{2}+2^{2}+0^{2}+5^{2}}=\sqrt{30}
\end{gathered}
$$

14) Graphically illustrate the solution to the system of equations below. (5 points)

$$
\begin{aligned}
& 2 x+y=4 \\
& 3 x-y=5
\end{aligned}
$$

15) Find the transpose of the matrix below. (5 points)

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 8 \\
3 & 4 & 5 & 0 \\
1 & 0 & 2 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 4 & 0 \\
2 & 5 & 2 \\
8 & 0 & 1
\end{array}\right]
$$

