\qquad

1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$
\left[\begin{array}{ll}
1 & 6 \\
3 & 2 \\
7 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 3 \\
2 & -1 & 5
\end{array}\right]
$$

2) Find the null space of the matrix below. (15 points)

$$
\left[\begin{array}{cccccc}
0 & 1 & 0 & -2 & 0 & 0 \\
0 & 0 & 1 & 6 & 0 & -4 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

3) Reduce the matrix below to reduced row echelon form. (15 points)

$$
\left[\begin{array}{ccccc}
0 & 0 & 3 & 2 & 1 \\
1 & 2 & 9 & 6 & 3 \\
2 & 4 & 6 & 4 & 2 \\
0 & 0 & 12 & 4 & 4
\end{array}\right]
$$

4) Answer the questions below (3 points each)
(A) Let A be a 3×3 matrix such that $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$ has a unique solution.

Is A a product of elementary matrices?
(B) Let A be a 5×7 matrix. When row reduced, it has 4 pivots. What is the dimension of the column space?
(C) Let A be a 6×4 matrix. When row reduced, it has 3 pivots.

How many solutions can $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2\end{array}\right]$ have?
(D) Let A be a 4×3 matrix such that $A \vec{x}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ has a unique solution, but $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right]$ has no solutions. What is the rank of A ?
(E) Let A be a 12×7 matrix whose row space has dimension 4 . When row reduced, how many pivots does it have?
5) Find the inverse of the matrix below. (10 points)
$\left[\begin{array}{ccc}9 & 18 & 27 \\ 2 & 3 & 5 \\ 0 & 0 & 1\end{array}\right]$

The following row reduction may or may not be useful for the problems on this page.
$\left[\begin{array}{cccc}1 & 2 & 4 & 1 \\ 0 & 3 & 3 & 1 \\ 2 & 1 & 5 & 1 \\ 1 & -5 & -3 & 2\end{array}\right] \sim_{R}\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
6) Determine whether or not the collection below is a vector space. Why? (5 points)

$$
\left\{\left[\begin{array}{c}
x_{1}+2 x_{2}+4 x_{3}+x_{4} \\
3 x_{2}+3 x_{3}+x_{4} \\
2 x_{1}+x_{2}+5 x_{3}+x_{4} \\
x_{1}-5 x_{2}-3 x_{3}+2 x_{4}
\end{array}\right]: x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\}
$$

7) Can $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]$ can be written as a linear combination of $\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 3 \\ 1 \\ -5\end{array}\right]$, and $\left[\begin{array}{c}4 \\ 3 \\ 5 \\ -3\end{array}\right]$. Why? (5 points)
8) Find the row space of the matrix below. Do not include redundant vectors. (5 points)

$$
\left[\begin{array}{cccc}
1 & 2 & 4 & 1 \\
0 & 3 & 3 & 1 \\
2 & 1 & 5 & 1 \\
1 & -5 & -3 & 2
\end{array}\right]
$$

9) Use the information below to solve the system of equations below. You do not need to simplify your answer. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
12 & 7 & 3 \\
20 & 13 & 6 \\
3 & 2 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & -1 & 3 \\
-2 & 3 & -12 \\
1 & -3 & 16
\end{array}\right]} \\
\begin{array}{c}
12 x+7 y+3 z=2 \\
20 x+13 y+6 z=1 \\
3 x+2 y+z=4
\end{array}
\end{gathered}
$$

10) How many solutions does the equation below have? (5 points)

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

11) Find the product below. (5 points)

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
3 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & 1 \\
3 & 4 & 4 & 4 & 3 \\
5 & 6 & 6 & 6 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 2 & 3
\end{array}\right]
$$

