1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$\begin{bmatrix} 1 & 6 \\ 3 & 2 \\ 7 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 & 3 \\ 2 & -1 & 5 \end{bmatrix}$$

2) Find the null space of the matrix below. (15 points)

$$\begin{bmatrix} 0 & 1 & 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 6 & 0 & -4 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

3) Reduce the matrix below to reduced row echelon form. (15 points)

$$\begin{bmatrix} 0 & 0 & 3 & 2 & 1 \\ 1 & 2 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 0 & 0 & 12 & 4 & 4 \end{bmatrix}$$

- 4) Answer the questions below (3 points each)
 - (A) Let *A* be a 3 × 3 matrix such that $A\vec{x} = \begin{bmatrix} 0\\0\\2 \end{bmatrix}$ has a unique solution. Is *A* a product of elementary matrices?
 - (B) Let A be a 5×7 matrix. When row reduced, it has 4 pivots. What is the dimension of the column space?
 - (C) Let A be a 6×4 matrix. When row reduced, it has 3 pivots.

How many solutions can
$$A\vec{x} = \begin{bmatrix} 0\\0\\0\\0\\0\\2\end{bmatrix}$$
 have?

(D) Let A be a 4 × 3 matrix such that
$$A\vec{x} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$
 has a unique solution, but $A\vec{x} = \begin{bmatrix} 0\\0\\0\\2 \end{bmatrix}$ has no solutions. What is the rank of A?

(E) Let A be a 12×7 matrix whose row space has dimension 4. When row reduced, how many pivots does it have?

5) Find the inverse of the matrix below. (10 points)

[9	18	27]
2	3	5
Lo	0	1]

The following row reduction may or may not be useful for the problems on this page.

Γ1	2	4	1		[1	0	2	0
0	3	3	1		0	1	1	0
2	1	5	1	\sim_R	0	0	0	1
1	-5	-3	2		0	0	0	0

6) Determine whether or not the collection below is a vector space. Why? (5 points)

$$\left\{ \begin{bmatrix} x_1 + 2x_2 + 4x_3 + x_4 \\ 3x_2 + 3x_3 + x_4 \\ 2x_1 + x_2 + 5x_3 + x_4 \\ x_1 - 5x_2 - 3x_3 + 2x_4 \end{bmatrix} : x_1, x_2, x_3, x_4 \in \mathbb{R} \right\}$$

7) Can
$$\begin{bmatrix} 1\\1\\2\\2 \end{bmatrix}$$
 can be written as a linear combination of $\begin{bmatrix} 1\\0\\2\\1\\-5 \end{bmatrix}$, $\begin{bmatrix} 2\\3\\1\\-5\\-3 \end{bmatrix}$, and $\begin{bmatrix} 4\\3\\5\\-3\\-3 \end{bmatrix}$. Why? (5 points)

8) Find the row space of the matrix below. Do not include redundant vectors. (5 points)

$$\begin{bmatrix} 1 & 2 & 4 & 1 \\ 0 & 3 & 3 & 1 \\ 2 & 1 & 5 & 1 \\ 1 & -5 & -3 & 2 \end{bmatrix}$$

9) Use the information below to solve the system of equations below. You do not need to simplify your answer. (5 points)

$$\begin{bmatrix} 12 & 7 & 3 \\ 20 & 13 & 6 \\ 3 & 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 & 3 \\ -2 & 3 & -12 \\ 1 & -3 & 16 \end{bmatrix}$$
$$12x + 7y + 3z = 2$$
$$20x + 13y + 6z = 1$$
$$3x + 2y + z = 4$$

10) How many solutions does the equation below have? (5 points) $\Gamma \chi_1$

$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 0 0	2 1 0	3 4 1	$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}$	=	[0 2 3]
---	-------------	-------------	-------------	---	---	-----------------

11) Find the product below. (5 points)

٢1	0	0	0	ך 0	г3	0	0	0	ך0	г1	2	2	2	ן1
0	2	0	0	0	0	1	0	0	0	3	4	4	4	3
0	0	1	0	0	0	0	1	0	0	5	6	6	6	5
0	0	0	1	-1	0	0	0	1	0	1	2	3	4	5
LO	0	0	0	1 J	LO	0	0	0	1	L_1	1	2	2	3]