Name \qquad Test 1, Fall 2021

1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 6 \\
3 & 2 \\
7 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 3 \\
2 & -1 & 5
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
14 & -3 & 33 \\
10 & 7 & 19 \\
18 & 19 & 31
\end{array}\right]}
\end{aligned}
$$

2) Find the null space of the matrix below. (15 points)

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
0 & 1 & 0 & -2 & 0 & 0 \\
0 & 0 & 1 & 6 & 0 & -4 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]} \\
x_{2}-2 x_{4}=0 \\
x_{3}+6 x_{4}-4 x_{6}=0 \\
x_{5}+x_{6}=0
\end{gathered}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
2 x_{4} \\
-6 x_{4}+4 x_{6} \\
x_{4} \\
-x_{6} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{c}
0 \\
2 \\
-6 \\
1 \\
0 \\
0
\end{array}\right] x_{4}+\left[\begin{array}{c}
0 \\
0 \\
4 \\
0 \\
-1 \\
1
\end{array}\right] x_{6}
$$

The null space is then:

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
-6 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
4 \\
0 \\
-1 \\
1
\end{array}\right]\right)
$$

Half credit: Minor mistake but something of merit such as missing one variable, improper notation No credit: major mistake such as improper equations or vectors in the wrong dimension
3) Reduce the matrix below to reduced row echelon form. (15 points)

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0 & 0 & 3 & 2 & 1 \\
1 & 2 & 9 & 6 & 3 \\
2 & 4 & 6 & 4 & 2 \\
0 & 0 & 12 & 4 & 4
\end{array}\right]} \\
& \begin{array}{c}
{\left[\begin{array}{ccccc}
0 & 0 & 3 & 2 & 1 \\
1 & 2 & 9 & 6 & 3 \\
2 & 4 & 6 & 4 & 2 \\
0 & 0 & 12 & 4 & 4
\end{array}\right] \sim \sim_{R}\left[\begin{array}{ccccc}
1 & 2 & 9 & 6 & 3 \\
0 & 0 & 3 & 2 & 1 \\
2 & 4 & 6 & 4 & 2 \\
0 & 0 & 12 & 4 & 4
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 2 & 9 & 6 & 3 \\
0 & 0 & 3 & 2 & 1 \\
0 & 0 & -12 & -8 & -4 \\
0 & 0 & 12 & 4 & 4
\end{array}\right]} \\
R_{1} \leftrightarrow R_{2}
\end{array} \\
& \sim_{R}\left[\begin{array}{ccccc}
1 & 2 & 9 & 6 & 3 \\
0 & 0 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& R_{4} \rightarrow R_{4}-4 R_{2} \quad R_{1} \rightarrow R_{1}-3 R_{2} \\
& R_{2} \rightarrow \frac{1}{3} R_{2} \\
& R_{3} \leftrightarrow R_{4} \\
& R_{3} \rightarrow-\frac{1}{4} R_{3} \\
& \sim_{R}\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-\frac{2}{3} R_{3}
\end{aligned}
$$

4) Answer the questions below (3 points each)
(A) Let A be a 3×3 matrix such that $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$ has a unique solution.

Is A a product of elementary matrices?

Yes
(B) Let A be a 5×7 matrix. When row reduced, it has 4 pivots. What is the dimension of the column space?

4
(C) Let A be a 6×4 matrix. When row reduced, it has 3 pivots.

How many solutions can $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right]$ have?

0 or ∞
(D) Let A be a 4×3 matrix such that $A \vec{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ has a unique solution, but $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$ has no solutions. What is the rank of A ?

3
(E) Let A be a 12×7 matrix whose row space has dimension 4 . When row reduced, how many pivots does it have?
5) Find the inverse of the matrix below. (10 points)
$\left[\begin{array}{ccc}9 & 18 & 27 \\ 2 & 3 & 5 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
9 & 18 & 27 & 1 & 0 & 0 \\
2 & 3 & 5 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 2 & 3 & \frac{1}{9} & 0 & 0 \\
2 & 3 & 5 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 2 & 3 & \frac{1}{9} & 0 & 0 \\
0 & -1 & -1 & -\frac{2}{9} & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& R_{1} \rightarrow \frac{1}{9} R_{1} \quad R_{2} \rightarrow R_{2}-2 R_{1} \\
& \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 1 & -\frac{3}{9} & 2 & 0 \\
0 & -1 & -1 & -\frac{2}{9} & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 0 & -\frac{3}{9} & 2 & -1 \\
0 & -1 & 0 & -\frac{2}{9} & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 0 & -\frac{3}{9} & 2 & -1 \\
0 & 1 & 0 & \frac{2}{9} & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& R_{1} \rightarrow R_{1}+2 R_{2} \quad R_{2} \rightarrow R_{2}+R_{3} \quad R_{2} \rightarrow-R_{2} \\
& {\left[\begin{array}{ccc}
9 & 18 & 27 \\
2 & 3 & 5 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
-\frac{3}{9} & 2 & -1 \\
\frac{2}{9} & -1 & -1 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

The following row reduction may or may not be useful for the problems on this page.
$\left[\begin{array}{cccc}1 & 2 & 4 & 1 \\ 0 & 3 & 3 & 1 \\ 2 & 1 & 5 & 1 \\ 1 & -5 & -3 & 2\end{array}\right] \sim_{R}\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
6) Determine whether or not the collection below is a vector space. Why? (5 points)

$$
\left\{\left[\begin{array}{c}
x_{1}+2 x_{2}+4 x_{3}+x_{4} \\
3 x_{2}+3 x_{3}+x_{4} \\
2 x_{1}+x_{2}+5 x_{3}+x_{4} \\
x_{1}-5 x_{2}-3 x_{3}+2 x_{4}
\end{array}\right]: x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\}
$$

It is, because it is the span of three vectors, which is by construction a vector space.
7) Can $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]$ can be written as a linear combination of $\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 3 \\ 1 \\ -5\end{array}\right]$, and $\left[\begin{array}{c}4 \\ 3 \\ 5 \\ -3\end{array}\right]$. Why? (5 points)

No. Look at the row reduced version, the pivot in the $4^{\text {th }}$ column tells us that it is linearly independent from the first three vectors.
8) Find the row space of the matrix below. Do not include redundant vectors. (5 points)
$\left[\begin{array}{cccc}1 & 2 & 4 & 1 \\ 0 & 3 & 3 & 1 \\ 2 & 1 & 5 & 1 \\ 1 & -5 & -3 & 2\end{array}\right]$

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right]^{T},\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]^{T},\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]^{T}\right)
$$

9) Use the information below to solve the system of equations below. You do not need to simplify your answer. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
12 & 7 & 3 \\
20 & 13 & 6 \\
3 & 2 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & -1 & 3 \\
-2 & 3 & -12 \\
1 & -3 & 16
\end{array}\right]} \\
\begin{array}{c}
12 x+7 y+3 z=2 \\
20 x+13 y+6 z=1 \\
3 x+2 y+z=4
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
12 & 7 & 3 \\
20 & 13 & 6 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 3 \\
-2 & 3 & -12 \\
1 & -3 & 16
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]}
\end{gathered}
$$

10) How many solutions does the equation below have? (5 points)

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

11) Find the product below. (5 points)

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
3 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & 1 \\
3 & 4 & 4 & 4 & 3 \\
5 & 6 & 6 & 6 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 2 & 3
\end{array}\right]
$$

(Use elementary matrices!)

