1) Given the basis
$$B = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$
 and $\vec{x}_B = \begin{bmatrix} 2\\0\\3 \end{bmatrix}_B$, find $[\vec{x}]_S$. (10 points)

(Not just a formula; actually find it)

2) Let $B_1 = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix} \}$ and $B_2 = \{ \begin{bmatrix} 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \}$. Draw an appropriate diagram representing this information that relates it to the standard basis. (10 points)

3) Find	1	2	0	0	
	0	2	0	4	(45)
	0	3	5	0	. (15 points)
	2	0	0	7	

4) Let $B_1 = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix} \}$ and $B_2 = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix} \}$. Define the linear transformation $T: \mathbb{R}^2_{B_1} \to \mathbb{R}^2_{B_2}$ via the equation below. Find a formula for $[T]^S_{B_1}$. (10 points)

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}_{B_1}\right) = \begin{bmatrix}5x_2\\x_1\end{bmatrix}_{B_2}$$

- 5) Answer the questions below (3 points each)
 - (A) Let *A* be a 3 × 3 matrix such that $A\vec{x} = \vec{0}$ has one free variable. What is |A|?
 - (B) Let A be a 3×5 matrix such that, when row reduced, has only 1 pivot. What is the dimension of the null space of A?
 - (C) Let A be a 5×3 matrix and T be the corresponding linear transformation. Assume T is one-toone. How many pivots does A have, when row reduced?
 - (D) Let $A\vec{x} = \vec{0}$ be a system of equations that has multiple solutions. Is the corresponding system of linear transformation one-to-one?
 - (E) Let A be a 11×7 matrix. There are 6 linearly independent rows. What is the rank of A?

6) Row reduce the matrix $\begin{bmatrix} 1 & 3 & 2 & 3 \\ 0 & 0 & 3 & 0 \\ 2 & 6 & 4 & 5 \end{bmatrix}$ to reduced echelon form. (10 points)

7) Find the determinant of $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$. (5 points)

8) Is the collection of vectors below a basis for some vector space? (5 points)

([1]		[0]		[0])
{	2	,	1	,	0 1 0	}
(0)

9) Find the kernel of the linear transformation given by the linear transformation below. (5 points) $T: \mathbb{R}^4 \to \mathbb{R}^3$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mapsto \begin{bmatrix} x_1 - 3x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

10) Given
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $T(\vec{x}) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, what is a formula for $[T^{-1}]$? (5 points)

11) Let $B_1 = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\0\\1 \end{bmatrix} \right\}$ and $B_2 = \left\{ \begin{bmatrix} 1\\3\\5 \end{bmatrix}, \begin{bmatrix} 2\\4\\6 \end{bmatrix} \right\}$. Find a formula for the change of basis matrix $[I]_{B_1}^{B_2}$ that changes basis B_1 into basis B_2 . (5 points)

12) Use Cramer's Rule to find a formula for the solution to x_3 . (5 points)

۲ 1	2	4]	$\begin{bmatrix} x_1 \end{bmatrix}$		[2]	
6	7	2	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	=	3	
Lo	9	0	$\begin{bmatrix} x_3 \end{bmatrix}$		12	