Name \qquad Test 2, Fall 2021

1) Given the basis $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and $\vec{x}_{B}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]_{B}$, find $[\vec{x}]_{S}$. (10 points)
(Not just a formula; actually find it)
2) Let $B_{1}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}4 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$. Draw an appropriate diagram representing this information that relates it to the standard basis. (10 points)
3) Find $\left|\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 2 & 0 & 4 \\ 0 & 3 & 5 & 0 \\ 2 & 0 & 0 & 7\end{array}\right|$.(15 points)
4) Let $B_{1}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$. Define the linear transformation $T: \mathbb{R}_{B_{1}}^{2} \rightarrow \mathbb{R}_{B_{2}}^{2}$ via the equation below. Find a formula for $[T]_{B_{1}}^{S} \cdot(10$ points $)$

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{B_{1}}\right)=\left[\begin{array}{c}
5 x_{2} \\
x_{1}
\end{array}\right]_{B_{2}}
$$

5) Answer the questions below (3 points each)
(A) Let A be a 3×3 matrix such that $A \vec{x}=\overrightarrow{0}$ has one free variable. What is $|A|$?
(B) Let A be a 3×5 matrix such that, when row reduced, has only 1 pivot. What is the dimension of the null space of A ?
(C) Let A be a 5×3 matrix and T be the corresponding linear transformation. Assume T is one-toone. How many pivots does A have, when row reduced?
(D) Let $A \vec{x}=\overrightarrow{0}$ be a system of equations that has multiple solutions. Is the corresponding system of linear transformation one-to-one?
(E) Let A be a 11×7 matrix. There are 6 linearly independent rows. What is the rank of A ?
6) Row reduce the matrix $\left[\begin{array}{llll}1 & 3 & 2 & 3 \\ 0 & 0 & 3 & 0 \\ 2 & 6 & 4 & 5\end{array}\right]$ to reduced echelon form. (10 points)
7) Find the determinant of $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$. (5 points)
8) Is the collection of vectors below a basis for some vector space? (5 points)

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

9) Find the kernel of the linear transformation given by the linear transformation below. (5 points)

$$
T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1}-3 x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

10) Given $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $T(\vec{x})=\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 5 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, what is a formula for $\left[T^{-1}\right]$? (5 points)
11) Let $B_{1}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right\}$. Find a formula for the change of basis matrix $[I]_{B_{1}}^{B_{2}}$ that changes basis B_{1} into basis B_{2}. (5 points)
12) Use Cramer's Rule to find a formula for the solution to x_{3}. (5 points)

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
6 & 7 & 2 \\
0 & 9 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
3 \\
12
\end{array}\right]
$$

