\qquad

1) Given the matrix below, find its eigenspaces. Circle or box your answer(s). (15 points)
$\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$
2) Find the eigenvalues of the linear transformation below. (5 points)

$$
\begin{aligned}
T: \mathbb{R}^{4} & \rightarrow \mathbb{R}^{4} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] } & \mapsto\left[\begin{array}{c}
2 x_{1} \\
3 x_{2} \\
5 x_{3} \\
x_{4}
\end{array}\right]
\end{aligned}
$$

3) Given the basis below, find an orthogonal version of the basis. (10 points)

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
5 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
-13
\end{array}\right]\right\}
$$

4) Answer the questions below (3 points each)
(A) Let A be a 3×3 matrix with eigenvalues 0,1 , and 4 . What is $|A|$?
(B) Let A be a 3×3 matrix with eigenvalues 0,1 , and 1 again. What is the dimension of the null space of A ?
(C) Let $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{10}$ be a one-to-one linear transformation. What is the dimension of $\operatorname{ker}(T)$.
(D) Let A be a 12×4 matrix whose columns are linearly independent. Is the corresponding linear transformation onto?
(E) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ be a linear transformation that is onto. Is it one-to-one?
5) Find the null space of the matrix below. (10 points)

$$
\left[\begin{array}{llll}
2 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

6) Consider the basis below and the coordinate vector $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]_{B}$. Find a formula for this same vector, represented in the standard coordinates. (10 points)

$$
B=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]\right\}
$$

7) Consider the two bases below and the vector $[\vec{x}]_{B_{2}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]_{B_{2}}$. Find a formula for $[\vec{x}]_{B_{1}} \cdot(10$ points $)$

$$
B_{1}=\left\{\left[\begin{array}{l}
2 \\
4
\end{array}\right],\left[\begin{array}{l}
7 \\
0
\end{array}\right]\right\} \quad B_{1}=\left\{\left[\begin{array}{l}
0 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
0
\end{array}\right]\right\}
$$

8) Find the diagonalization of the matrix below. (5 points)
9) Find a formula for $\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]^{1000}$ that involves no more than 5 matrix multiplications. (5 points)
10) If it is known that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}6 \\ 3\end{array}\right]$, find the rule for T. (5 points)
11) Find a formula for the angle between the vectors $\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}6 \\ 5\end{array}\right]$. (5 points)
12) Write down span $\left(\left\{\left[\begin{array}{l}2 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 5\end{array}\right]\right\}\right)$ using set builder notation. (5 points)
