1) Find the product below. (15 points)

$$\begin{bmatrix} 2 & 3 & -2 \\ 1 & 4 & 0 \\ 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & 3 \\ 0 & 3 & -1 \end{bmatrix}$$

2) Row reduce the matrix below to reduced echelon form. (15 points)

[6	12	6	18
2	4	2	5
L5	10	2	5]

3) Find the null space of the matrix below. (15 points)

$$\begin{bmatrix} 1 & 3 & 0 & -4 \\ 1 & 4 & 0 & 4 \end{bmatrix}$$

4) Answer the following questions. (3 points each)

A) Let *A* be a 5 × 5 invertible matrix. How many solutions can $A\vec{x} = \vec{0}$ have?

B) Let *A* be a 3 × 3 matrix such that
$$A\vec{x} = \begin{bmatrix} 0\\0\\3 \end{bmatrix}$$
 has no solutions. How many solutions can $A\vec{x} = \begin{bmatrix} 0\\0\\6 \end{bmatrix}$ have?

C) Let $A\vec{x} = \vec{b}$ be a system of 3 equations in 3 variables with a unique solution. What is the row space of *A*?

D) Let *A* be a 6 × 4 matrix, which when row reduced has 3 pivots. How many solutions can $A\vec{x} = \vec{b}$ with $\vec{b} \neq \vec{0}$ have?

E) Let *A* be a 6 × 4 matrix, which when row reduced has 4 pivots. How many solutions can $A\vec{x} = \vec{b}$ with $\vec{b} \neq \vec{0}$ have?

5) For each of the following, is it true or false that it is possible to multiply the matrices given? (1 point each)

T or F	A)	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
T or F	B)	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
T or F	C)	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
T or F	D)	The product AB where A is 2×3 and B is 4×2
T or F	E)	The product <i>AB</i> where <i>A</i> is 2×3 and <i>B</i> is 4×5

6) Find the product below. (5 points)

г1	0	0	0	ך0	г1	1	0	0	ך0	٢1	1	2	2	31
0	1	0	0	0	0	1	0	0	0	3	4	4	5	5
0	0	1	0	0	0	0	1	0	0	6	6	4	4	5
0	0	0	3	0	0	0	0	1	0	5	3	3	2	2
LO	0	0	0	1	LO	0	0	0	1	L_1	2	2	1	3]

For the problems on this page, you might be interested in the following fact.

[2	4	-4	1	1	1	1]	Γ	1	2	-2	0	0	0	0]
1	2	-2	0	2	0	4		0	0	0	1	0	1	-1
1	2	-2	3	2	3	1	\sim_R	0	0	0	0	1	0	2
4	8	-8	2	3	2	4	L	0	0	0	0	0	0	0

7) Express the span below in set builder notation. Do not include redundant vectors. (10 points)

$$span\left(\left\{ \begin{bmatrix} 2\\1\\1\\4 \end{bmatrix}, \begin{bmatrix} 4\\2\\2\\8 \end{bmatrix}, \begin{bmatrix} -4\\-2\\-2\\-8 \end{bmatrix}, \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\4\\1\\4 \end{bmatrix} \right) \right)$$

8) Solve the system of equations below. (10 points)

$$2x_{1} + 4x_{2} - 4x_{3} + x_{4} + x_{5} + x_{6} = 1$$

$$x_{1} + 2x_{2} - 2x_{3} + 2x_{5} = 4$$

$$x_{1} + 2x_{2} - 2x_{3} + 3x_{4} + 2x_{5} + 3x_{6} = 1$$

$$4x_{1} + 8x_{2} - 8x_{3} + 2x_{4} + 3x_{5} + 2x_{6} = 4$$

9) On the axis provided, illustrate the length of the vector below. (5 points)

$$\vec{v} = \begin{bmatrix} -4\\ 3 \end{bmatrix}, \|\vec{v}\| = 5$$

10) What is the inverse of the matrix below? (5 points)

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$$