Name \qquad

1) Find the product below. (15 points)

$$
\left[\begin{array}{ccc}
2 & 3 & -2 \\
1 & 4 & 0 \\
3 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & 3 \\
0 & 3 & -1
\end{array}\right]
$$

2) Row reduce the matrix below to reduced echelon form. (15 points)
$\left[\begin{array}{cccc}6 & 12 & 6 & 18 \\ 2 & 4 & 2 & 5 \\ 5 & 10 & 2 & 5\end{array}\right]$
3) Find the null space of the matrix below. (15 points)
$\left[\begin{array}{cccc}1 & 3 & 0 & -4 \\ 1 & 4 & 0 & 4\end{array}\right]$
4) Answer the following questions. (3 points each)
A) Let A be a 5×5 invertible matrix. How many solutions can $A \vec{x}=\overrightarrow{0}$ have?
B) Let A be a 3×3 matrix such that $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$ has no solutions. How many solutions can $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 6\end{array}\right]$ have?
C) Let $A \vec{x}=\vec{b}$ be a system of 3 equations in 3 variables with a unique solution. What is the row space of A ?
D) Let A be a 6×4 matrix, which when row reduced has 3 pivots. How many solutions can $A \vec{x}=\vec{b}$ with $\vec{b} \neq \overrightarrow{0}$ have?
E) Let A be a 6×4 matrix, which when row reduced has 4 pivots. How many solutions can $A \vec{x}=\vec{b}$ with $\vec{b} \neq \overrightarrow{0}$ have?
5) For each of the following, is it true or false that it is possible to multiply the matrices given? (1 point each)
$\begin{array}{lll}\mathrm{T} \text { or } F & \text { A) }\end{array}\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
$\begin{array}{lll}\mathrm{T} \text { or } \mathrm{F} & \text { B) }\end{array}\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
$\begin{array}{ll}\mathrm{T} \text { or } \mathrm{F} & \left.\text { C) }\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right], ~\right]\end{array}$
Tor F D) The product $A B$ where A is 2×3 and B is 4×2

Tor F E) The product $A B$ where A is 2×3 and B is 4×5
6) Find the product below. (5 points)

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 1 & 2 & 2 & 3 \\
3 & 4 & 4 & 5 & 5 \\
6 & 6 & 4 & 4 & 5 \\
5 & 3 & 3 & 2 & 2 \\
1 & 2 & 2 & 1 & 3
\end{array}\right]
$$

For the problems on this page, you might be interested in the following fact.

$$
\left[\begin{array}{lllllll}
2 & 4 & -4 & 1 & 1 & 1 & 1 \\
1 & 2 & -2 & 0 & 2 & 0 & 4 \\
1 & 2 & -2 & 3 & 2 & 3 & 1 \\
4 & 8 & -8 & 2 & 3 & 2 & 4
\end{array}\right] \sim_{R}\left[\begin{array}{ccccccc}
1 & 2 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

7) Express the span below in set builder notation. Do not include redundant vectors. (10 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
2 \\
1 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
4 \\
2 \\
2 \\
8
\end{array}\right],\left[\begin{array}{l}
-4 \\
-2 \\
-2 \\
-8
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1 \\
4
\end{array}\right]\right\}\right)
$$

8) Solve the system of equations below. (10 points)

$$
\begin{array}{r}
2 x_{1}+4 x_{2}-4 x_{3}+x_{4}+x_{5}+x_{6}=1 \\
x_{1}+2 x_{2}-2 x_{3}+2 x_{5}=4 \\
x_{1}+2 x_{2}-2 x_{3}+3 x_{4}+2 x_{5}+3 x_{6}=1 \\
4 x_{1}+8 x_{2}-8 x_{3}+2 x_{4}+3 x_{5}+2 x_{6}=4
\end{array}
$$

9) On the axis provided, illustrate the length of the vector below. (5 points)
$\vec{v}=\left[\begin{array}{c}-4 \\ 3\end{array}\right],\|\vec{v}\|=5$

10) What is the inverse of the matrix below? (5 points)

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right]
$$

