Name \qquad

1) Given the basis $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ and $\vec{x}_{S}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]_{S}$, find a formula for $[\vec{x}]_{B} \cdot(10$ points $)$

2) Given the bases $B_{1}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 13\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}4 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$, find a formula for the change of basis matrix that converts vectors from basis B_{1} into vectors from basis B_{2}. (10 points)
$[I]_{B_{1}}^{B_{2}}=\left[\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right]^{-1}\left[\begin{array}{cc}1 & 2 \\ 1 & 13\end{array}\right]$

3) Find the determinant of the matrix below. (15 points)

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 3 \\
1 & 3 & 0 & 5 \\
0 & 0 & 1 & -4 \\
3 & 4 & 0 & 2
\end{array}\right]
$$

$$
\begin{aligned}
& \left|\begin{array}{llll}
1 & 2 & 0 & 3 \\
1 & 3 & 0 & 5 \\
0 & 0 & 1 & -4 \\
3 & 4 & 0 & 2
\end{array}\right|=1\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 5 \\
3 & 4 & 2
\end{array}\right|=\left|\begin{array}{ll}
3 & 5 \\
4 & 2
\end{array}\right|-2\left|\begin{array}{ll}
1 & 5 \\
3 & 2
\end{array}\right|+3\left|\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right| \\
& =(6-20)-2(2-15)+3(4-9)=-14+26-15=-3
\end{aligned}
$$

4) Given the linear transformation $T: \mathbb{R}_{S}^{2} \rightarrow \mathbb{R}_{S}^{2}$ given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]_{S}\right)=\left[\begin{array}{c}3 x_{1} \\ x_{1}+x_{2}\end{array}\right]_{S}$ and the bases below, find a formula for $\left[T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]_{B_{1}}\right)\right]_{B_{2}}$. (10 points)

$$
\begin{aligned}
& B_{1}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\} \\
& B_{2}=\left\{\left[\begin{array}{l}
4 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} \\
& {\left[T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{B_{1}}\right)\right]_{B_{2}}=\left[\begin{array}{ll}
4 & 2 \\
4 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]} \\
& \mathbb{R}_{B_{1}}^{2} \\
& \mathbb{R}_{B_{2}}^{2} \\
& \left.\left.\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] \right\rvert\, \begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

5) Answer the following questions. (3 points each)
A) Let A be a 3×3 matrix and assume that it has rank 2 . How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
∞
B) Let A be a 3×4 matrix and assume that the corresponding linear transformation T is not onto. What is the minimum dimension of the null space of A ?

2
C) Let A be a 3×7 matrix. Assume that the dimension of the row space is 3 . What is the dimension of the column space?

3
D) Consider a system of 5 equations in 3 variables. Assume there are infinitely many solutions. If A is the matrix representing this system, what are the possible values for the rank of A ?

0,1 , or 2.
E) Let A be a 6×6 matrix and T the corresponding linear transformation. If $\operatorname{dim}(\operatorname{ker}(T))=2$, what is the rank of A ?
6) Find the product below. (10 points)

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right]} \\
{\left[\begin{array}{ccc}
3 & 4 & 5 \\
6 & 8 & 10
\end{array}\right]}
\end{gathered}
$$

7) Let $f(x)=2 x+3$, find $f\left(\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]\right)$. (5 points)
$f\left(\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]\right)=2\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]+3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}5 & 4 \\ 0 & 7\end{array}\right]$
8) Given the information below, find a formula for $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 2 \\
4 & 7
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-7 & 2 \\
4 & -1
\end{array}\right]} \\
x_{1}+2 x_{2}=5 \\
4 x_{1}+7 x_{2}=7
\end{gathered}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-7 & 2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

9) Find a basis for the vector space below. (5 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
2 \\
0
\end{array}\right]\right\}\right)
$$

$B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
10) Given the information below, find $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right) \cdot(10$ points)

$$
\begin{gathered}
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
{[T]=\left[\begin{array}{ll}
2 & 0 \\
1 & 0 \\
4 & 3
\end{array}\right]}
\end{gathered}
$$

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{ll}
2 & 0 \\
1 & 0 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
10
\end{array}\right]
$$

11) Find the inverse of the matrix below. (5 points)

$$
\begin{gathered}
\left.\left[\begin{array}{llllll}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \sim_{R}^{1} \begin{array}{lll}
0 & 4 \\
0 & 0 & 1 \\
0 & 2 & 0
\end{array}\right] \\
{\left[\begin{array}{lllllll}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{lllllll}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{lllllllll}
1 & 0 & 0 & 1 & -4 & 0 \\
0 & 1 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 0 & 4 \\
0 & 0 & 1 \\
0 & 2 & 0
\end{array}\right]}
\end{gathered}
$$

