Name $\qquad$

1) Find all the eigenspaces of the matrix below ( 15 points)

$$
\begin{aligned}
& \left.|x I-A|=\left\lvert\, \begin{array}{ccc}
-1 & -3 & 3 \\
0 & -1 & 0 \\
0 & -3 & 2
\end{array}\right.\right] \\
& \left.\begin{array}{ccc}
x+1 & 3 & -3 \\
0 & x+1 & 0 \\
0 & 3 & x-2
\end{array}|=(x+1)| \begin{array}{cc}
x+1 & 0 \\
3 & x-2
\end{array} \right\rvert\,=(x+1)(x+1)(x-2)
\end{aligned}
$$

For $\lambda=-1$ we get:

$$
\left[\begin{array}{ccc}
-1+1 & 3 & -3 \\
0 & -1+1 & 0 \\
0 & 3 & -1-2
\end{array}\right]=\left[\begin{array}{ccc}
0 & 3 & -3 \\
0 & 0 & 0 \\
0 & 3 & -3
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This has eigenspace $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.

For $\lambda=2$ we get:

$$
\left[\begin{array}{ccc}
2+1 & 3 & -3 \\
0 & 2+1 & 0 \\
0 & 3 & 2-2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 3 & -3 \\
0 & 3 & 0 \\
0 & 3 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This has eigenspace span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
2) Given the basis below, find an orthogonal basis for the same vector space. (10 points)

The first vector is $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
The second vector is $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]-\operatorname{proj}_{[1}\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\left(\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]\right)$

$$
\left.\begin{array}{c}
\operatorname{proj}_{[1}^{1} \\
1 \\
0
\end{array}\right]\left(\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right)=\frac{2+3}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2.5 \\
2.5 \\
0
\end{array}\right] .
$$

The orthogonal basis is:

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-0.5 \\
0.5 \\
4
\end{array}\right]\right\}
$$

3) Answer the following questions. (3 points each)
A) Let $A$ be a $5 \times 5$ with eigenvalues $0,0,1,2,3$. What is the maximum rank of $A$ ?

4
B) Let $A$ be a $3 \times 5$ matrix whose nullity is 4 . When row reduced, how many rows of zeroes are there?

2
C) Consider a system of 4 equations and 4 variables that has a unique solution. When row reduced, how many pivots does the corresponding matrix have?

4
D) Let $A$ be a $6 \times 6$ matrix whose corresponding linear transformation $T$ is onto. Is $T$ one-to-one?

Yes
A) Let $A$ be a $3 \times 3$ matrix whose corresponding linear transformation $T$ is not one-to-one. What is the determinant of $A$ ?

0
4) Given the two bases and linear transformation below, draw the diagram that represents this information. (10 points)

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
2
\end{array}\right]\right\}, B_{2}=\left\{\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
5
\end{array}\right]\right\}, T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{B_{1}}\right)=\left[\begin{array}{c}
x_{2} \\
3 x_{1}-x_{2}
\end{array}\right]_{B_{2}}
$$


5) Continuing from the previous problem, find a formula for $\left[T^{-1}\right]_{S}^{S}$. (5 points)

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
3 & -1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 0 \\
3 & 5
\end{array}\right]^{-1}
$$

6) Find the null space of the matrix below. (10 points)
$\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -1\end{array}\right]$
$\operatorname{span}\left\{\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$
7) Find the determinant of the matrix below. (10 points)
$\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 4 & 0 \\ 0 & 0 & 1 & 2 & 6 \\ 0 & 0 & 4 & 1 & 2 \\ 0 & 0 & 0 & 0 & 5\end{array}\right]$
$2 \cdot 1 \cdot 5 \cdot\left|\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right|=10(1-8)=-70$
8) Find the characteristic polynomial of the matrix below. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 & 3 \\
4 & -1
\end{array}\right]} \\
\left|\begin{array}{cc}
x-2 & -3 \\
-4 & x+1
\end{array}\right|=(x-2)(x+1)-12
\end{gathered}
$$

9) What matrix represents the quadratic form below?. (5 points)

$$
x^{2}+4 x y+6 y^{2}
$$

$\left[\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right]$

For each of the following, answer true (always true) or false (any possible exception). No justification required, although if you choose to write a sentence explaining yourself you can receive partial credit for an incorrect response if you show some understanding of the underlying concepts. (5 points each)

T or $F$ 10) It possible to multiply a matrix of size $3 \times 5$ with a matrix of size $6 \times 3$ ?

False

T or $F 11$ ) Let $A$ be a $5 \times 7$ matrix whose rank is 5 and $T$ the corresponding linear transformation given by $T(\vec{x})=A \vec{x} . T$ is onto.

True

T or F 12) Let $A$ be a $5 \times 5$ matrix with eigenvalues $0,1,2,3,4$. $A$ is diagonalizable.

True

