Name \qquad

Please show all your work and circle your answer when appropriate. You do not need to simplify answers unless the problem specifies to do so.

1) Given $f(n)=n^{3}+3 n^{2}+n \log (n)$, find a big-Oh notation that gives an asymptotic upper bound for $f(n)$. (3 points)
2) Given $f(n)=n^{3}+3 n^{2}+n \log (n)$, find a big-Omega (Ω) notation that gives an asymptotic lower bound for $f(n)$. (3 points)
3) Justify the claim that $3 n^{2}+n$ is $O\left(n^{2}\right)$. (4 points)
4) How many 12 -letter strings can be formed from the letters A, B, C, and D ? (3 points)
5) Suppose a bag of letters has 4 A's, 3 B's, 3 C's, and 2 D's. How many 12 letter strings can be formed from these letters? (3 points)
6) Solve the equation below for x_{1}, x_{2}, x_{3}, and x_{4}. Each variable must be a positive integer. Note that a number is positive if it greater than zero. (4 points)

$$
x_{1}+x_{2}+x_{3}+x_{4}=16
$$

7) Find the coefficient of x^{7} in the expression $(2 y-x)^{70} .(4$ points $)$
8) You are dealt 5 cards from a standard deck of 52 cards. What is the probability you do not get a flush? (A flush is when all your cards are the same suit, such as five spades) (4 points)
9) Find the general solution to the recurrence relation given by $a_{n}=3 a_{n-1}+10 a_{n-2}$. (4 points)
10) In Dijkstra's algorithm on an arbitrary graph, give and explain a lower bound for the total number of times an implementation of the algorithm would have to load a vertex to the computer's processor. (4 points)

Use the graph below to solve these problems.

$11)$ Give an example of a path between A and L. (2 points)
12) Give an example of a cycle through A. (2 points)
13) What vertex has the largest degree? (2 points)

14) Run Dijkstra's algorithm on the graph to find the shortest path between A and P. Illustrate your work on the graph itself. (8 points)

