Name \qquad Solutions \qquad

1) Give 5 asymptotic bounds for the function below, one for each of O, Ω, Θ, o, and ω.

$$
f(n)=n^{2} \log ^{2}(n)+5 n^{3}+7
$$

$f(n)$ is $O\left(n^{3}\right), \Omega\left(n^{3}\right), \Theta\left(n^{3}\right), o\left(n^{3} \log (n)\right)$, and $\omega\left(n^{2}\right)$.
(There are other possible answers too)
2) Show that $f(n)=n^{3}+3 n$ is $O\left(n^{3}\right)$.

For $n \geq 3$ we see that $f(n) \leq 2 n^{3}$ because:

$$
n^{3}+3 n \leq n^{3}+n^{2} \leq n^{3}+n^{3}=2 n^{3}
$$

Hence $n^{3}+3 n$ is $O\left(n^{3}\right)$.
(There are other possible answers too. Most people showed that $n^{3}+3 n \leq 4 n^{3}$ for $n \geq 1$ which is fine)
3) You and three friends are at a restaurant. You're going to order a total of 4 beverages and 4 meals. You each will order beverages separately from a list of 12 choices. Together you will order 4 different meals and share them all with each other, from a list of 21 choices. How many different dining options do you have?

$$
12^{n} \cdot\binom{21}{4}
$$

