Name \qquad Solutions \qquad

1) A sequence is given by $T_{n}=6 T_{n-2}-T_{n-1}$, and it is known that $T_{0}=8$. Find four solutions to this recurrence relation.

Characteristic equation:

$$
\begin{gathered}
x^{2}=6-x \\
x^{2}+x-6=0 \\
(x-2)(x+3)=0 \\
x=2 ; x=-3
\end{gathered}
$$

Two solutions to the recurrence relation without the initial condition:

$$
S_{1}=2^{n}, S_{2}=(-3)^{n}
$$

General solution:

$$
T_{n}=a 2^{n}+b(-3)^{n}
$$

Initial condition:

$$
8=a+b
$$

From here we can get as many solutions as you like, such as:

$$
\begin{gathered}
T_{n}=8 \cdot 2^{n} \\
T_{n}=7 \cdot 2^{n}+(-3)^{n} \\
T_{n}=6 \cdot 2^{n}+2 \cdot(-3)^{n} \\
T_{n}=5 \cdot 2^{n}+3 \cdot(-3)^{n}
\end{gathered}
$$

2) A sequence is given by $T_{n}=10 T_{\left[\frac{n}{3}\right\rfloor}+n^{2}$. Find an asymptotic expression for T_{n} using big-oh.

Using the main recurrence theorem (part 1), we compare 5 to 3^{2} and see that the third part is what we need:

$$
T_{n} \text { is } O\left(n^{\log _{3}(10)}\right)
$$

