Name \qquad Fields and Rings, Quiz 4

1) Consider the function $f: \mathbb{C}^{2 \times 2} \rightarrow \mathbb{R}$ defined by $f(M)=\operatorname{Re}(|M|)$, that is, the $f(M)$ is the real component of the determinant of M. Show that f is not a homomorphism.
2) Using the same function as in (1), find $f^{-1}(\{0\})$

3) Let $C[0,5]$ be the ring of continuous functions with domain $[0,5]$ and codomain \mathbb{R}. The operations on $C[0,5]$ are pointwise addition and multiplication. One particular ideal of $C[0,5]$ is $I=\{f \in C[0,5]: f(3)=0\}$. Let $f, g \in C[0,5]$. Show that the cosets $I+f$ and $I+g$ are equal if and only if $f(3)=g(3)$.

