Name_____

1) Consider the function $f: \mathbb{C}^{2 \times 2} \to \mathbb{R}$ defined by f(M) = Re(|M|), that is, the f(M) is the real component of the determinant of M. Show that f is *not* a homomorphism.

2) Using the same function as in (1), find $f^{-1}(\{0\})$

3) Let C[0,5] be the ring of continuous functions with domain [0,5] and codomain \mathbb{R} . The operations on C[0,5] are pointwise addition and multiplication. One particular ideal of C[0,5] is $I = \{f \in C[0,5]: f(3) = 0\}$. Let $f, g \in C[0,5]$. Show that the cosets I + f and I + g are equal if and only if f(3) = g(3).