Codename \qquad Fields and Rings, Test 1
(Do not put your name on the test; write your name and codename on the code sheet)

1) Consider the ideal I of $\mathbb{Q}[x]$ defined below. Write it in terms of a single generator. (100 points)

$$
I=\left\{\left(x^{2}+x\right) P+x^{2} Q \mid P, Q \in \mathbb{Q}[x]\right\}
$$

Tor $\mathrm{F} \quad 2$) Every ideal in $\mathbb{Q}[x]$ is a principal ideal. (20 points)

T or $\mathrm{F} \quad 3$) Every ideal in $\mathbb{Q}[x, y]$ is a principal ideal. (20 points)

Tor $F \quad 4$) Every ideal in \mathbb{Q} is a principal ideal. (20 points)
5) Run through the Extended Euclidean Algorithm in $\mathbb{Z}_{2}[x]$ to solve the equation below: (100 points)

$$
\left(x^{3}+x^{2}+1\right) P+\left(x^{2}+1\right) Q=1
$$

Tor $F \quad 6$) $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z} \quad$ (20 points)

Tor $\mathrm{F} \quad$ 7) $\mathbb{Z}_{2}[x]=\mathbb{Z} / 2 \mathbb{Z} \quad$ (20 points)

Tor $\mathrm{F} \quad$ 8) $\mathbb{Z}_{2}[x] /\langle x\rangle$ is a field. (20 points)

Codename

\qquad
(Do not put your name on the test; write your name and codename on the code sheet)
9) Prove or disprove the claim that $\mathbb{Q}[x] \bmod \left\langle x^{2}-1\right\rangle$ is a field. (100 points)
10) How many elements are in $\mathbb{Q}[x] \bmod \left\langle x^{2}-1\right\rangle$? (50 points)
11) How many elements are in $\mathbb{Z}_{5}[x] \bmod \left\langle x^{2}-1\right\rangle$? (50 points)
12) Let R be a ring with unity, and S be a ring. Label as 1_{R} the unity in R. It is given that there is a surjective homomorphism $\varphi: R \rightarrow S$. Prove that S also has unity. (100 points)

Codename \qquad Sheet 3
(Do not put your name on the test; write your name and codename on the code sheet)
13) Let ω be a special complex number such that $\omega^{3}=1$ and $\omega^{3}+\omega^{2}+\omega=0$. Obviously $\mathbb{R}[\omega] \subseteq \mathbb{C}$. Prove that $\mathbb{R}[\omega]$ is closed under addition and multiplication. (100 points)
14) What is the dimension of $\mathbb{R}[\omega]$ as a \mathbb{R}-vector space? (30 points)
15) What is the dimension of $\mathbb{R}[\omega]$ as a \mathbb{Q}-vector space? (30 points)

T or $F 16) \mathbb{R}[\omega]$ is a \mathbb{Z}_{2}-vector space? (20 points)

T or $F 17) \mathbb{R}[\omega]$ is a \mathbb{C}-vector space? $(20$ points $)$
18) Let R be a ring with unity. It is given that $a b=b c=1$. Prove that $a=c$. (Note that it was not specified that R is commutative, nor that any of a, b, or c are invertible). (100 points)
19) Let R be a ring with unity and let 1 be the identity. What does this mean? Express the definition of identity. (30 points)
20) Let R be a ring with unity and let x be an invertible element of R. What does this mean? Express the definition of invertible. (30 points)

