Name \qquad Solutions \qquad

1) Compute the following mod 23: (50 points)

$$
14+5 \cdot 6
$$

Mod 23 we have:

$$
14+5 \cdot 6 \equiv 14+30 \equiv 44 \equiv 21
$$

Or done another way:

$$
14+5 \cdot 6 \equiv 14+30 \equiv 14+7 \equiv 21
$$

2) Define what it means for a number in \mathbb{Z} to be prime. (25 points)

A number p is prime when If $p \mid a b$ then $p \mid a$ or $p \mid b$ holds true for all integers a and b.
3) Define what it means for a number in \mathbb{Z} to be irreducible. (25 points)

A number q is irreducible if when $q=a b$, then either $a= \pm 1$ or $b= \pm 1$ for all integers a and b.
4) Let p be a prime number in \mathbb{Z}. Prove that p is irreducible. (100 points)

Let p be a prime number in \mathbb{Z} and write $p=a b$ for some integers a and b. Because $p=a b$, it is trivial that $p \mid a b$. However, p is prime so we know that $p \mid a$ or $p \mid b$. Without loss of generality let us say that $p \mid a$.

Next write $p k=a$ for some $k \in \mathbb{Z}$, using the fact that $p \mid a$. Plug that back into the original equation to obtain:

$$
\begin{gathered}
p=p k b \\
1=k b
\end{gathered}
$$

Hence $b=1$ or $b=-1$.
5) Use the extended Euclidean Algorithm to solve $3 x+8 y=1$ for integer solutions. Show every step. (100 points)
$\begin{array}{ll}8=3 \cdot 2+2 & 2=8-3 \cdot 2 \\ 3=2 \cdot 1+1 & 1=3-2=3-(8-3 \cdot 2)=3 \cdot 3-8=3 \cdot 3+8 \cdot(-1)\end{array}$

$$
x=3
$$

$$
y=-1
$$

