1) Use the Euclidean Algorithm to find gcd(10,26). (20 points)

2) Formally define the set \mathbb{Q} . (20 points)

3) What is the difference between "8 \equiv 2 (mod 6)" and "[8]_6 = [2]_6" ? (20 points)

4) Solve $3x \equiv 6 \pmod{9}$ (25 points)

5) Let $f = \sum_{i=0}^{n} a_i x^i$ and $g = \sum_{j=0}^{m} b_j x^j$. Write down a formula for $f \cdot g$. (25 points)

6) Choose and formally define one of the following: (25 points)

- a) $\mathbb{Q}[x]$
- b) \mathbb{Z}_n

7) State 6 properties that a ring must satisfy. (25 points)

8) Give three different examples of rings. (20 points)

9) Explain the difference between a polynomial and a function. (20 points)

10) Let $m \in \mathbb{Z}_{\geq 2}$ and [a] and [b] be congruence classes mod m. Define $S := \{x + y | x \in [a], y \in [b]\}$. Prove that $S \subseteq [a] + [b]$. (100 points) 11) Suppose $f, g \in \mathbb{Q}[x]$. Also suppose that there are infinitely many points s_i such that $f(s_i) = g(s_i)$. Prove that f = g. (100 points)