\qquad

1) Use the Euclidean Algorithm to find $\operatorname{gcd}(10,26)$. (20 points)
2) Formally define the set \mathbb{Q}. (20 points)
3) What is the difference between " $8 \equiv 2(\bmod 6)$ " and " $[8]_{6}=[2]_{6}$ " ? (20 points)
4) Solve $3 x \equiv 6(\bmod 9)$ (25 points)
5) Let $f=\sum_{i=0}^{n} a_{i} x^{i}$ and $g=\sum_{j=0}^{m} b_{j} x^{j}$. Write down a formula for $f \cdot g \cdot(25$ points $)$
6) Choose and formally define one of the following: (25 points)
a) $\mathbb{Q}[x]$
b) \mathbb{Z}_{n}
7) State 6 properties that a ring must satisfy. (25 points)
8) Give three different examples of rings. (20 points)
9) Explain the difference between a polynomial and a function. (20 points)
10) Let $m \in \mathbb{Z}_{\geq 2}$ and $[a]$ and $[b]$ be congruence classes $\bmod m$. Define $S:=\{x+y \mid x \in[a], y \in[b]\}$. Prove that $S \subseteq[a]+[b]$. (100 points)
11) Suppose $f, g \in \mathbb{Q}[x]$. Also suppose that there are infinitely many points s_{i} such that $f\left(s_{i}\right)=g\left(s_{i}\right)$. Prove that $f=g$. (100 points)
