## Codename

$\qquad$ Fields and Rings, Test 2, Fall 2016
(Do not put your name on the test; write your name and codename on the code sheet)

1) Let $R$ be a ring. Describe, in an English sentence, the set $\left\{x \in R \mid \forall_{r \in R}(x r=r x)\right.$ (50 points)
2) Why are $x+i$ and $(1+i) x+(-1+i)$ associates in $\mathbb{C}[x]$ ? (50 points)
3) Let $I$ and $J$ be ideals of a ring commutative ring $R$. We can define an operation on the two ideals we'll call " + " via:

$$
I+J:=\{a+b \mid a \in I, b \in J\}
$$

Prove that $I+J$ is an ideal of $R$. (100 points)

Codename $\qquad$ Fields and Rings, Test 2, Fall 2016
(Do not put your name on the test; write your name and codename on the code sheet)
4) Let $I$ and $J$ be ideals of a ring commutative ring $R$. Refer to the previous problem for the definition of $I+J$. Prove that $I \subseteq I+J$. (50 points)
5) Let $S \subseteq \mathbb{Z}$ be the set of all prime numbers. Is $S$ a ring? Justify your answer. (50 points)
6) Let $R_{1}$ be a ring with operations " + " and ".". Also let $R_{2}$ be a ring with operations " $\oplus$ " and " $\odot$ ".
a) Define $R_{1} \times R_{2}$ as a set. (5 points)
b) Define the standard addition operation on $R_{1} \times R_{2}$. (5 points)
c) Define the standard multiplication operation on $R_{1} \times R_{2}$. (5 points)
d) Prove that $R_{1} \times R_{2}$ has unique additive inverses under your addition operation. (35 points).

Codename $\qquad$ Fields and Rings, Test 2, Fall 2016
(Do not put your name on the test; write your name and codename on the code sheet)
7) In a commutative ring with unity suppose that $n$ is the least positive integer for which we get 0 when we add 1 to itself $n$ times; we then say $R$ has characteristic $n$. If there exists no such $n$, we say that $R$ has characteristic 0 . For example, the characteristic of $\mathbb{Z}_{5}$ is 5 because $1+1+1+1+1=0$, whereas $1+1+1+1 \neq 0$.

Suppose $R$ and $S$ are commutative rings with unity, and there is an isomorphism $\varphi: R \rightarrow S$. Prove that if $R$ has characteristic $n$, then $S$ also has characteristic $n$. (100 points)

