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1) Let 𝑅 be a ring. Describe, in an English sentence, the set {𝑥 ∈ 𝑅|∀𝑟∈𝑅(𝑥𝑟 = 𝑟𝑥) (50 points) 

 

Possible answer 1: The set of all objects 𝑥 in 𝑅 such that 𝑥𝑟 = 𝑟𝑥 for every object 𝑟 in 𝑅. 

 

Possible answer 2: The set of all objects 𝑥 in 𝑅 that commutes with everything in 𝑅. 

 

Possible answer 3: The set of everything in 𝑅 that commutes with everything in 𝑅. 

 

Possible answer 4: The center of 𝑅.  

 

Problem difficulty: Medium - we discussed this in class when we were given the English (#3 above) and 

we constructed the set notation given in the problem. 
 

 

 

 

 

 

 

 

 

2) Why are 𝑥 + 𝑖 and (1 + 𝑖)𝑥 + (−1 + 𝑖) associates in ℂ[𝑥]?  (50 points) 

 

Note that (1 + 𝑖)(𝑥 + 𝑖) = (1 + 𝑖)𝑥 + (1 + 𝑖)𝑖 = (1 + 𝑖)𝑥 + (−1 + 𝑖). Also note that because 1 + 𝑖  is 

in ℂ, and nonzero, it is a unit. Hence 𝑥 + 𝑖 times a unit is (1 + 𝑖)𝑥 + (−1 + 𝑖). That is precisely what it 

means to be associates. 

 

Problem difficulty: Easy – this was a graded homework problem. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



3) Let 𝐼 and 𝐽 be ideals of a ring commutative ring 𝑅. We can define an operation on these two ideals 

we’ll call “+” via: 

𝐼 + 𝐽 ≔ {𝑎 + 𝑏|𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽} 

Prove that 𝐼 + 𝐽 is an ideal of 𝑅. (100 points) 

 

First note that 𝐼 + 𝐽 ⊆ 𝑅, and so we can use the criterion that it is an ideal if we can show all of the 

following: 

1. 𝐼 + 𝐽 ≠ ∅ 

2. If 𝑥1, 𝑥2 ∈ 𝐼 + 𝐽, then 𝑥1 − 𝑥2 ∈ 𝐼 + 𝐽. 

3. If 𝑥 ∈ 𝐼 + 𝐽 and 𝑟 ∈ 𝑅, then 𝑥𝑟 ∈ 𝐼 + 𝐽.  

 

#1: 0 ∈ 𝐼 + 𝐽 because 0 = 0 + 0 and 0 ∈ 𝐼, 0 ∈ 𝐽.  

 

#2: Suppose 𝑥1, 𝑥2 ∈ 𝐼 + 𝐽. Then we can write 𝑥1 = 𝑎1 + 𝑏1 and 𝑥2 = 𝑎2 + 𝑏2 where 𝑎1, 𝑎2 ∈ 𝐼 and 

𝑏1, 𝑏2 ∈ 𝐽. Because 𝐽 is a ring, we also know that 𝑎1 − 𝑎2 ∈ 𝐼 and 𝑏1 − 𝑏2 ∈ 𝐽 We then get: 

𝑥1 − 𝑥2 = 𝑎1 + 𝑏1 − (𝑎2 + 𝑏2) = (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2) ∈ 𝐼 + 𝐽 

 

#3 Suppose 𝑥 ∈ 𝐼 + 𝐽 and 𝑟 ∈ 𝑅. Then we can write 𝑥 = 𝑎 + 𝑏 where 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐽. Because 𝐼 and 𝐽 

are ideals, we know that 𝑎𝑟 ∈ 𝐼 and 𝑏𝑟 ∈ 𝐽. We then get: 

𝑥𝑟 = (𝑎 + 𝑏)𝑟 = 𝑎𝑟 + 𝑏𝑟 ∈ 𝐼 + 𝐽 

 

Problem difficulty: Medium – this problem presented a new piece of information that you had to figure 

out how to deal with. However, it only required understanding that new information and working 

through the definition of an ideal. 
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4) Let 𝐼 and 𝐽 be ideals of a ring commutative ring 𝑅. Refer to the previous problem for the definition of 

𝐼 + 𝐽. Prove that 𝐼 ⊆ 𝐼 + 𝐽. (50 points) 

 

Let 𝑥 ∈ 𝐼. Note that 0 ∈ 𝐽, and so 𝑥 = 𝑥 + 0 ∈ 𝐼 + 𝐽. 

 

Problem difficulty: Hard – this problem used a new piece of information that you had to figure out how 

to deal with. Furthermore, it required constructing a proof that doesn’t just follow from writing out the 

definitions. 

 

 

 

 

 

 

 

 

 

5) Let 𝑆 ⊆ ℤ be the set of all prime numbers. Is 𝑆 a ring? Justify your answer. (50 points) 

 

This is not a ring for many reasons. One reason is that it doesn’t contain the additive identity 0. Another 

is that it’s not closed under addition because 3 + 5 = 8. Yet another is that it’s not closed under 

multiplication because 3 ⋅ 5 = 15. 

 

Problem difficulty: Medium – This problem required constructing a new proof that you haven’t seen 

before. However, the objects in question are very familiar to us. 

 

 

  



6) Let 𝑅1 be a ring with operations “+” and “⋅”. Also let 𝑅2 be a ring with operations “⊕” and “⊙”.  

a) Define 𝑅1 × 𝑅2 as a set. (5 points) 

 

𝑅1 × 𝑅2 = {(𝑎, 𝑏)|𝑎 ∈ 𝑅1, 𝑏 ∈ 𝑅2} 

 

Problem difficulty: Trivial – this is a fundamentals question from Transitions and uses nothing new from 

this class. 

 

 

b) Define the standard addition operation on 𝑅1 × 𝑅2. (5 points) 

 

(𝑎1, 𝑏1) + (𝑎2, 𝑏2) ≔ (𝑎1 + 𝑎2, 𝑏1⊕𝑏2) 

 

Problem difficulty: Easy – we’ve done this many times. 

 

 

 

c) Define the standard multiplication operation on 𝑅1 × 𝑅2. (5 points) 

 

(𝑎1, 𝑏1) ⋅ (𝑎2, 𝑏2) ≔ (𝑎1 ⋅ 𝑎2, 𝑏1⊙𝑏2) 

 

Problem difficulty: Easy – we’ve done this many times. 

 

 

 

d) Prove that 𝑅1 × 𝑅2 has unique additive inverses under your addition operation. (35 points). 

 

Possible answer 1: We know that 𝑅1 × 𝑅2 is a ring under these operations, and rings have unique 

additive inverses. 

 

Possible answer 2:  

Note that the identity is (0𝑅1 , 0𝑅2) where 0𝑅1 and 0𝑅2 are the additive identities in 𝑅1 and 𝑅2 

respectively. 

 

Suppose (𝑥, 𝑦) is an arbitrary element in 𝑅1 × 𝑅2. Then (𝑥, 𝑦) + (−𝑥,−𝑦) = (𝑥 − 𝑥, 𝑦 − 𝑦) = (0𝑅1 , 0𝑅2). 

Furthermore, because −𝑥 is unique and −𝑦 are unique, so (−𝑥,−𝑦) is unique as well.  

 

Problem difficulty: Easy – especially if you remember that 𝑅1 × 𝑅2 is a ring. Everything we’ve done in 

class is fair game to use on a test, so #1 is actually 100% correct. However, if you were unsure whether 

or not you can use that fact, #2 was a direct application of the fact that 𝑅1 and 𝑅2 are rings. 
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7) In a commutative ring with unity suppose that 𝑛 is the least positive integer for which we get 0 when 

we add 1 to itself 𝑛 times; we then say 𝑅 has characteristic 𝑛. If there exists no such 𝑛, we say that 𝑅 has 

characteristic 0. For example, the characteristic of ℤ5 is 5 because 1 + 1 + 1 + 1 + 1 = 0, whereas 

1 + 1 + 1 + 1 ≠ 0.  

 

Suppose 𝑅 and 𝑆 are commutative rings with unity, and there is an isomorphism 𝜑: 𝑅 → 𝑆. Prove that if 

𝑅 has characteristic 𝑛, then 𝑆 also has characteristic 𝑛. (100 points) 

 

 

Let 1𝑅 and 1𝑆 be the multiplicative identities in 𝑅 and 𝑆 respectively. Similarly denote 0𝑅 and 0𝑆 as their 

obvious meanings. Note that 𝜑(1𝑅) = 1𝑆 and 𝜑(0𝑅) = 0𝑆. Then we get: 

 

1𝑆 + 1𝑆 +⋯+ 1𝑆⏟          
𝑛 times

= 𝜑(1𝑅) + 𝜑(1𝑅) + ⋯+𝜑(1𝑅)⏟                  
𝑛 times

= 𝜑(1𝑅 + 1𝑅 +⋯+ 1𝑅⏟            
𝑛 times

) = 𝜑(0𝑅) = 0𝑆 

 

Hence indeed 𝑆 has characteristic 𝑛.  

 

 

Another more difficult way to write this is below. It’s more difficult because it requires truly 

understanding the difference between ring multiplication and scalar multiplication as repeated addition: 

𝑛 ⋅ 1𝑆 = 𝑛 ⋅ 𝜑(1𝑅) = 𝜑(𝑛 ⋅ 1𝑅) = 𝜑(0𝑅) = 0𝑆 

 

 

Problem difficulty: Easy or Hard – this was intended to be the most difficult problem on this test. It 

requires taking new information and constructing a proof that isn’t based on just definitions. It required 

some ingenuity. However, this problem was also taken from the exercises in the textbook. If you 

happened to do that problem while studying, this became an easy problem because it’s no longer new 

information. 

 


