Name ______ Quiz 4

Using only the definition and facts about rings below, prove the theorems below.

Definition D1: A <u>ring</u> is a set of elements with two binary operations, called addition and multiplication, such that:

- Addition is closed
- Addition is commutative
- Addition is associative
- There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)
- There exist additive inverses (Do NOT call them -a unless we have the uniqueness theorem)
- Multiplication is closed
- Multiplication is associative
- Multiplication distributes over addition

Definition D2: Let R be a ring and $S \subseteq R$. S is said to be a <u>subring</u> of R if S is itself a ring with the same operations as R.

1) Let a, b, and c be elements of a ring R. Assume a+b=a+c, and prove that b=c. (This is theorem T1. You cannot use theorems T2+ on this problem)

Theorem T2: Let a and b be elements of a ring a. Then a + x = b always has a unique solution.

Theorem T3: Let R be a ring. If $a + 0_1 = a$ and $a + 0_2 = a$ for all elements $a \in R$, then $0_1 = 0_2$.

Theorem T4: For each element a in a ring R, it's additive inverse is unique.

Theorem T5: Let a be an element of a ring R and denote the additive identity as a. Then $a \cdot a = 0$.

Theorem T6: Let R be a ring and let $a, b \in R$. Denote the additive inverse of each element $c \in R$ as -c, no matter what c is. Then a(-b) = (-a)b = -(ab).

Theorem T7: Let R be a ring, and S a subset of R. S is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$
- 3. $a, b \in S \Rightarrow a \cdot b \in S$
- 4. $a \in S \Rightarrow -a \in S$
- 2) Prove that $2\mathbb{Z}$ is a ring.