Name \qquad

Using only the definition and facts about rings below, prove the theorems below.

Definition D1: A ring is a set of elements with two binary operations, called addition and multiplication, such that:

- Addition is closed
- Addition is commutative
- Addition is associative
- There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)
- There exist additive inverses (Do NOT call them -a unless we have the uniqueness theorem)
- Multiplication is closed
- Multiplication is associative
- Multiplication distributes over addition

Definition D2: Let R be a ring and $S \subseteq R$. S is said to be a subring of R if S is itself a ring with the same operations as R.

1) Let a, b, and c be elements of a ring R. Assume $a+b=a+c$, and prove that $b=c$.
(This is theorem T1. You cannot use theorems T2+ on this problem)
Proof: Because $a \in R$, we know that it has an addititve inverse, $d \in R$, such that $a+d=d+a=I$, where I is an additive identity.

$$
\begin{gathered}
a+b=a+c \\
\therefore d+a+b=d+a+c \\
\therefore I+b=I+c \\
\therefore b=c
\end{gathered}
$$

Theorem T2: Let a and b be elements of a ring R. Then $a+x=b$ always has a unique solution.

Theorem T3: Let R be a ring. If $a+0_{1}=a$ and $a+0_{2}=a$ for all elements $a \in R$, then $0_{1}=0_{2}$.
Theorem T4: For each element a in a ring R, it's additive inverse is unique.

Theorem T5: Let a be an element of a ring R and denote the additive identity as 0 . Then $a \cdot 0=0 \cdot a=0$.

Theorem T6: Let R be a ring and let $a, b \in R$. Denote the additive inverse of each element $c \in R$ as $-c$, no matter what c is. Then $a(-b)=(-a) b=-(a b)$.

Theorem T7: Let R be a ring, and S a subset of R. S is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

1. $S \neq \emptyset$
2. $a, b \in S \Rightarrow a+b \in S$
3. $a, b \in S \Rightarrow a \cdot b \in S$
4. $a \in S \Rightarrow-a \in S$
2) Prove that $2 \mathbb{Z}$ is a ring.

Proof: Note that $2 \mathbb{Z} \subseteq \mathbb{Z}$, which is a ring. Hence we can use the subring theorem, T7, above.

1) $2=2 \cdot 1 \in 2 \mathbb{Z}$, and so $2 \mathbb{Z} \neq \varnothing$

Let $a, b \in 2 \mathbb{Z}$, that means that we can write $a=2 k$ and $b=2 l$ for some $k, l \in \mathbb{Z}$.
2) $a+b=2 k+2 l=2(k+l) \in 2 \mathbb{Z}$.
3) $a b=(2 k)(2 l)=4 k l=2(2 k l) \in 2 \mathbb{Z}$.
4) $-a=-2 k=2(-k) \in 2 \mathbb{Z}$.

