Using only the definition and facts about rings below, answer the two problems below.

Definition D1: A ring is a set of elements with two binary operations, called addition and multiplication, such that:
- Addition is closed
- Addition is commutative
- Addition is associative
- There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)
- There exist additive inverses (Do NOT call them \(-a\) unless we have the uniqueness theorem)
- Multiplication is closed
- Multiplication is associative
- Multiplication distributes over addition

Definition D2: Let \(R \) be a ring and \(S \subseteq R \). \(S \) is said to be a subring of \(R \) if \(S \) is itself a ring with the same operations as \(R \).

Theorem T1: Let \(a, b, \) and \(c \) be elements of a ring \(R \). If \(a + b = a + c \), then \(b = c \).

Theorem T2: Let \(a \) and \(b \) be elements of a ring \(R \). Then \(a + x = b \) always has a unique solution.

Theorem T3: Let \(R \) be a ring. If \(a + 0_1 = a \) and \(a + 0_2 = a \) for all elements \(a \in R \), then \(0_1 = 0_2 \).

Theorem T4: For each element \(a \) in a ring \(R \), its additive inverse is unique.

Theorem T5: Let \(a \) be an element of a ring \(R \) and denote the additive identity as 0. Then \(a \cdot 0 = 0 \cdot a = 0 \).

Theorem T6: Let \(R \) be a ring and let \(a, b \in R \). Denote the additive inverse of each element \(c \in R \) as \(-c\), no matter what \(c \) is. Then \(a(-b) = (-a)b = -(ab) \).

Theorem T7: Let \(R \) be a ring, and \(S \) a subset of \(R \). \(S \) is a subring if and only if all of the following are satisfied for all elements \(a, b \in S \):
1. \(S \neq \emptyset \)
2. \(a, b \in S \Rightarrow a + b \in S \)
3. \(a, b \in S \Rightarrow a \cdot b \in S \)
4. \(a \in S \Rightarrow -a \in S \)

Definition D2: Let \(R \) be a ring. A multiplicative identity of \(R \) is an element \(s \in R \) such that \(sr = rs = r \) for all \(r \in R \).

Problem 1) Show that if a ring \(R \) has a multiplicative identity, then it is unique.

(AFTER you prove this theorem, it will justify the notation "1" for the multiplicative identity.)
Definition D3: Let R and S be rings. A function $\varphi: R \to S$ is called a ring homomorphism if it satisfies:

1. $\varphi(r + s) = \varphi(r) + \varphi(s)$ for all $r, s \in R$.
2. $\varphi(rs) = \varphi(r)\varphi(s)$ for all $r, s \in R$.

Problem 2) It is known that $\mathbb{Q}[x]$ and \mathbb{Q} are both rings. Show that the function $\varphi: \mathbb{Q}[x] \to \mathbb{Q}$ defined by $\varphi(f) = f(0)$ is a homomorphism.

...but before you attempt problem 2, first calculate $\varphi(23x^7 - 15x^7 + 4x^3 - 2x^2 + x + 4)$ and check your answer with the instructor to make sure you understand what the φ function does.

Definition D4: Let R and S be rings. A ring homomorphism $\varphi: R \to S$ is called a ring isomorphism if it is also one-to-one and onto. In this case R and S have an identical structure as rings.