Definition D1: A ring is a set of elements with two binary operations, called addition and multiplication, such that:

- Addition is closed
- Addition is commutative
- Addition is associative
- There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)
- There exist additive inverses (Do NOT call them \(-a\) unless we have the uniqueness theorem)
- Multiplication is closed
- Multiplication is associative
- Multiplication distributes over addition

Definition D2: Let \(R \) be a ring and \(S \subseteq R \). \(S \) is said to be a subring of \(R \) if \(S \) is itself a ring with the same operations as \(R \).

Theorem T1: Let \(a, b, \) and \(c \) be elements of a ring \(R \). If \(a + b = a + c \), then \(b = c \).

Theorem T2: Let \(a \) and \(b \) be elements of a ring \(R \). Then \(a + x = b \) always has a unique solution.

Theorem T3: Let \(R \) be a ring. If \(a + 0_1 = a \) and \(a + 0_2 = a \) for all elements \(a \in R \), then \(0_1 = 0_2 \).

Theorem T4: For each element \(a \) in a ring \(R \), it’s additive inverse is unique.

Theorem T5: Let \(a \) be an element of a ring \(R \) and denote the additive identity as \(0 \). Then \(a \cdot 0 = 0 \cdot a = 0 \).

Theorem T6: Let \(R \) be a ring and let \(a, b \in R \). Denote the additive inverse of each element \(c \in R \) as \(-c\), no matter what \(c \) is. Then \(a(-b) = (-a)b = -(ab) \).

Theorem T7: Let \(R \) be a ring, and \(S \) a subset of \(R \). \(S \) is a subring if and only if all of the following are satisfied for all elements \(a, b \in S \):

1. \(S \neq \emptyset \)
2. \(a, b \in S \Rightarrow a + b \in S \)
3. \(a, b \in S \Rightarrow a \cdot b \in S \)
4. \(a \in S \Rightarrow -a \in S \)

Definition D2: Let \(R \) be a ring. A multiplicative identity of \(R \) is an element \(s \in R \) such that \(sr = rs = r \) for all \(r \in R \). (Do NOT call it “1” until you justify that notation by proving that it is unique.)

Theorem T8: Let \(R \) be a ring. If \(R \) has a multiplicative identity, then it is unique.
Definition D3: Let \(R \) and \(S \) be rings. A function \(\varphi: R \rightarrow S \) is called a ring homomorphism if it satisfies:

1. \(\varphi(r + s) = \varphi(r) + \varphi(s) \) for all \(r, s \in R \).
2. \(\varphi(rs) = \varphi(r)\varphi(s) \) for all \(r, s \in R \).

Definition D4: Let \(R \) and \(S \) be rings. A ring homomorphism \(\varphi: R \rightarrow S \) is called a ring isomorphism if it is also one-to-one and onto. In this case \(R \) and \(S \) have an identical structure as rings.

Definition D5: Let \(R \) be a ring. An element \(b \neq 0 \) in \(R \) is called a zero divisor if there is another nonzero element \(a \in R \) such that \(ab = 0 \).

Definition D6: A ring that is commutative with unity and no zero divisors is called an integral domain.

Theorem T9: Let \(R \) be an integral domain and suppose \(a \neq 0 \). If \(ab = ac \), then \(b = c \).

Definition D7: Let \(R \) be a ring with unity and \(x \in R \). If there is some element \(y \in R \) such that \(xy = 1 \), we say that \(x \) is invertible, or a unit. The set of all units of \(R \) is denoted either \(U(R) \) or \(R^* \).

Definition D8: Let \(R \) be a commutative ring and \(a, b \in R \). We say that \(a \) and \(b \) are associates of each other if there is some \(u \in R^* \) such that \(a = ub \).

Definition D9: An integral domain in which every nonzero element is invertible is called a field.

Problem 1) Prove Theorem T8.

Problem 2) Find the complex conjugate of the number \(3 + 2i \). Then show that the complex conjugate function \(f(a + bi) := a - bi \) is a homomorphism.