Name

Definition D1: A <u>ring</u> is a set of elements with two binary operations, called addition and multiplication, such that:

- Addition is closed
- Addition is commutative
- Addition is associative
- There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)
- There exist additive inverses (Do NOT call them -a unless we have the uniqueness theorem)
- Multiplication is closed
- Multiplication is associative
- Multiplication distributes over addition

Definition D2: Let *R* be a ring and $S \subseteq R$. *S* is said to be a <u>subring</u> of *R* if *S* is itself a ring with the same operations as *R*.

Theorem T1: Let a, b, and c be elements of a ring R. If a + b = a + c, then b = c.

Theorem T2: Let *a* and *b* be elements of a ring *R*. Then a + x = b always has a unique solution.

Theorem T3: Let *R* be a ring. If $a + 0_1 = a$ and $a + 0_2 = a$ for all elements $a \in R$, then $0_1 = 0_2$.

Theorem T4: For each element *a* in a ring *R*, it's additive inverse is unique.

Theorem T5: Let *a* be an element of a ring *R* and denote the additive identity as 0. Then $a \cdot 0 = 0 \cdot a = 0$.

Theorem T6: Let *R* be a ring and let $a, b \in R$. Denote the additive inverse of each element $c \in R$ as -c, no matter what *c* is. Then a(-b) = (-a)b = -(ab).

Theorem T7: Let *R* be a ring, and *S* a subset of *R*. *S* is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$
- 3. $a, b \in S \Rightarrow a \cdot b \in S$
- 4. $a \in S \Rightarrow -a \in S$

Definition D2: Let *R* be a ring. A multiplicative identity of *R* is an element $s \in R$ such that sr = rs = r for all $r \in R$. (Do NOT call it "1" until you justify that notation by proving that it is unique.)

Theorem T8: Let *R* be a ring. If *R* has a multiplicative identity, then it is unique.

Definition D3: Let *R* and *S* be rings. A function $\varphi: R \to S$ is called a ring homomorphism if is satisfies:

- 1. $\varphi(r+s) = \varphi(r) + \varphi(s)$ for all $r, s \in R$.
- 2. $\varphi(rs) = \varphi(r)\varphi(s)$ for all $r, s \in R$.

Definition D4: Let *R* and *S* be rings. A ring homomorphism $\varphi: R \to S$ is called a ring isomorphism if is also one-to-one and onto. In this case *R* and *S* have an identical structure as rings.

Definition D5: Let *R* be a ring. An element $b \neq 0$ in *R* is called a <u>zero divisor</u> if there is another nonzero element $a \in R$ such that ab = 0.

Definition D6: A ring that is commutative with unity and no zero divisors is called an integral domain.

Theorem T9: Let *R* be an integral domain and suppose $a \neq 0$. If ab = ac, then b = c.

Definition D7: Let *R* be a ring with unity and $x \in R$. If there is some element $y \in R$ such that xy = 1, we say that x is <u>invertible</u>, or a <u>unit</u>. The set of all units of *R* is denoted either U(R) or R^* .

Definition D8: Let *R* be a commutative ring and $a, b \in R$. We say that *a* and *b* are <u>associates</u> of each other if there is some $u \in R^*$ such that a = ub.

Definition D9: An integral domain in which every nonzero element is invertible is called a field.

Theorem T10: $x \in \mathbb{Z}_m$ is a unit if and only if gcd(x, m) = 1.

Theorem T11: Let n be an integer at least 2. \mathbb{Z}_n is a field if and only if p is prime.

Theorem T12: Let p be a prime number and $0 \neq x \in \mathbb{Z}_p$. Then $x^{p-1} = 1$ in \mathbb{Z}_p .

Theorem T13: Let R be a finite integral domain. Then R is a field.

Problem 1) Prove Theorem T12.

Problem 2) Suppose R_1 and R_2 are rings with 15 and 18 elements, respectively. Is it possible that R_1 is isomorphic to R_2 ? Justify your answer.