Name Quiz 9

Definition D2: Let R be a ring and $S \subseteq R$. S is said to be a subring of R if S is itself a ring with the same operations as R.

Theorem T1: Let a, b, and c be elements of a ring R. If a + b = a + c, then b = c.

Theorem T2: Let a and b be elements of a ring R. Then a + x = b always has a unique solution.

Theorem T3: Let R be a ring. If $a + 0_1 = a$ and $a + 0_2 = a$ for all elements $a \in R$, then $0_1 = 0_2$.

Theorem T4: For each element α in a ring R, it's additive inverse is unique.

Theorem T5: Let a be an element of a ring R and denote the additive identity as $a \cdot 0 = a \cdot a = 0$.

Theorem T6: Let R be a ring and let $a, b \in R$. Denote the additive inverse of each element $c \in R$ as -c, no matter what c is. Then a(-b) = (-a)b = -(ab).

Theorem T7: Let R be a ring, and S a subset of R. S is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$
- 3. $a, b \in S \Rightarrow a \cdot b \in S$
- 4. $a \in S \Rightarrow -a \in S$

Definition D2: Let R be a ring. A multiplicative identity of R is an element $s \in R$ such that sr = rs = r for all $r \in R$. (Do NOT call it "1" until you justify that notation by proving that it is unique.)

Theorem T8: Let R be a ring. If R has a multiplicative identity, then it is unique.

Definition D3: Let R and S be rings. A function $\varphi: R \to S$ is called a ring homomorphism if is satisfies:

- 1. $\varphi(r+s) = \varphi(r) + \varphi(s)$ for all $r, s \in R$.
- 2. $\varphi(rs) = \varphi(r)\varphi(s)$ for all $r, s \in R$.

Definition D4: Let R and S be rings. A ring homomorphism $\varphi: R \to S$ is called a ring isomorphism if is also one-to-one and onto. In this case R and S have an identical structure as rings.

Definition D5: Let R be a ring. An element $b \neq 0$ in R is called a <u>zero divisor</u> if there is another nonzero element $a \in R$ such that ab = 0.

Definition D6: A ring that is commutative with unity and no zero divisors is called an <u>integral domain</u>.

Theorem T9: Let R be an integral domain and suppose $a \neq 0$. If ab = ac, then b = c.

Definition D7: Let R be a ring with unity and $x \in R$. If there is some element $y \in R$ such that xy = 1, we say that x is invertible, or a unit. The set of all units of R is denoted either U(R) or R^* .

Definition D8: Let R be a commutative ring and $a, b \in R$. We say that a and b are <u>associates</u> of each other if there is some $u \in R^*$ such that a = ub.

Definition D9: An integral domain in which every nonzero element is invertible is called a field.

Theorem T10: Let n be an integer at least 2. \mathbb{Z}_n is a field if and only if p is prime.

Theorem T11: $x \in \mathbb{Z}_m$ is a unit if and only if gcd(x, m) = 1.

Theorem T12: Let p be a prime number and $0 \neq x \in \mathbb{Z}_p$. Then $x^{p-1} = 1$ in \mathbb{Z}_p .

Theorem T13: Let *R* be a finite integral domain. Then *R* is a field.

Definition D10: Let R be a commutative ring. An ideal I of R is a subring that satisfies $xr \in I$ for all $x \in I$ and $r \in R$.

Definition D11: A principal ideal is an ideal with a single generator: $\langle a \rangle := \{ar | r \in R\}$. A ring is called a <u>principal ideal</u> <u>domain</u> (PID) if every ideal is principal.

Theorem T14a: Let R be a commutative ring with identity. Fix two elements $a, b \in R$. If $\langle a \rangle \subseteq \langle b \rangle$, then a = bt for some $t \in R$.

Theorem T14b: Let R be a commutative ring with identity. Fix two elements $a, b \in R$. If a = bt for some $t \in R$, then $\langle a \rangle \subseteq \langle b \rangle$.

Theorem T15a: Let R be a commutative ring with unity and $r \in R$. If $\langle r \rangle = R$, then r is a unit.

Theorem T15b: Let R be a commutative ring with unity and $r \in R$. If r is a unit, then $\langle r \rangle = R$.

Theorem T16a: Let R be an integral domain and let $r, s \in R$. If $\langle r \rangle = \langle s \rangle$, then r and s are associates.

Theorem T16b: Let R be an integral domain and let $r, s \in R$. If r and s are associates, then $\langle r \rangle = \langle s \rangle$.

Theorem T17a: Let R be a commutative ring with unity. If R is a field then its only ideals are $\{0\}$ and R itself.

Theorem T17b: Let R be a commutative ring with unity. If its only ideals are $\{0\}$ and R itself then R is a field.

Theorem T18: \mathbb{Z} is a PID.

Problem 1) Prove Theorem T15a.

Problem 2) Simplify the ideal (x-2,x+3) in $\mathbb{R}[x]$ and justify your answer.