Codename \qquad Fields and Rings, Test 1, Fall 2017
(Do not put your name on the test; write your name and codename on the code sheet)

1) Justify the fact that $6 \mid 18$.
(20 points)
2) Construct the division equation for 17 divided by 5 .
(20 points)
3) An principle ideal $\langle p\rangle$ of $\mathbb{Z}[x]$ is the set of all polynomial multiples of the polynomial p. Formally, that is, $\langle p\rangle:=\{f p \mid f \in \mathbb{Z}[x]\}$. Describe, in English, the principle ideal $\langle x-1\rangle$.
(40 points)
4) Use the Euclidean Algorithm to find $\operatorname{gcd}(17,5)$
(60 points)
5) We know that $55 \equiv 35$ mod 10 . Write down two equivalent statements you can derive from this.
(I mean meaningful things you can say. Don't just say that $55 \equiv 35 \equiv 5$. Use theorems that tell us interesting things.) (40 points)

Codename

\qquad Fields and Rings, Page 2, Fall 2017
(Do not put your name on the test; write your name and codename on the code sheet)
6) State Gauss's Lemma.
(20 points)
7) Solve the equation $7 x+3 \equiv 5 \bmod 10$. Show your work. (60 points)
8) We proved that the definition of addition, below, is well defined. State, precisely, what it means for this to be well defined.

$$
[a]_{m}+[b]_{m}=[a+b]_{m}
$$

(40 points)
9) Formally define the set \mathbb{Q}. Use mathematical notation.
(20 points)
10) Formally define the set $\mathbb{Q}[x]$. Use mathematical notation.
(20 points)

Codename

\qquad Fields and Rings, Page 3, Fall 2017
(Do not put your name on the test; write your name and codename on the code sheet)
11) Factor $6 x^{2}+7 x+2$.
(40 points)
12) Find the product below.

$$
\left(\sum_{r=0}^{50} r^{2} x^{r}\right)\left(\sum_{s=0}^{30} 3 s x^{s}\right)
$$

(20 points)
13) A polynomial is called monic if the leading term is one. Prove that the product of two monic polynomials is always monic.
(100 points)

Codename \qquad Fields and Rings, Page 4, Fall 2017
(Do not put your name on the test; write your name and codename on the code sheet)
14) A polynomial in two variables can have both the variable x and the variable y. It is said to be homogeneous if every term has the same degree. For example, $3 x^{2} y-2 x^{3}+x y^{2}$ is homogeneous of degree 3 . However, $3 x^{2} y-2 x^{2}+y$ is not homogeneous

Let f and g both be homogeneous polynomials. Show that their product, $f \cdot g$, is also homogeneous. (100 points)
15) Suppose $2 x \equiv y$ mod 100 has a solution. Show the following two claims.
A) $2 \mid y$
(100 points)
B) $x \equiv \frac{y}{2} \bmod 50$. (100 points)

