Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)

1) Justify the fact that $6 \mid 18$.
(20 points)

$$
6 \cdot 3=18
$$

2) Construct the division equation for 17 divided by 5 .
(20 points)

$$
17=5 \cdot 3+2
$$

3) An principle ideal $\langle p\rangle$ of $\mathbb{Z}[x]$ is the set of all polynomial multiples of the polynomial p. Formally, that is, $\langle p\rangle:=\{f p \mid f \in \mathbb{Z}[x]\}$. Describe, in English, the principle ideal $\langle x-1\rangle$. (40 points)

This is the set of all polynomial multiples of $x-1$.

OR

This is the set of all polynomials with a factor of $x-1$.

OR

This is the set of all polynomials with a root of 1 .
4) Use the Euclidean Algorithm to find $\operatorname{gcd}(17,5)$
(60 points)

$$
\begin{gathered}
17=5 \cdot 3+2 \\
5=2 \cdot 2+1 \\
\operatorname{gcd}(17,5)=1
\end{gathered}
$$

5) We know that $55 \equiv 35$ mod 10 . Write down two equivalent statements you can derive from this. (I mean meaningful things you can say. Don't just say that $55 \equiv 35 \equiv 5$. Use theorems that tell us interesting things.) (40 points)

10|55-35
$10 k=55-35$ for some $k \in \mathbb{Z}$
$55=10 k+35$ for some $k \in \mathbb{Z}$
$35=10 k+55$ for some $k \in \mathbb{Z}$

Codename \qquad Fields and Rings, Page 2, Fall 2017
(Do not put your name on the test; write your name and codename on the code sheet)
6) State Gauss's Lemma.
(20 points)
If a polynomial f can be factored ($f=g h$ for some $g h$) over $\mathbb{Q}(g, h \in \mathbb{Q}[x])$, then it can be factored over \mathbb{Z} (Actually we can choose $g, h \in \mathbb{Z}[x]$)
7) Solve the equation $7 x+3 \equiv 5 \bmod 10$. Show your work. (60 points)
$7 x \equiv 2 \bmod 10$
$3 \cdot 7 x \equiv 3 \cdot 2 \bmod 10$
$x \equiv 6 \bmod 10$
8) We proved that the definition of addition, below, is well defined. State, precisely, what it means for this to be well defined.

$$
[a]_{m}+[b]_{m}=[a+b]_{m}
$$

(40 points)

If $\left[a_{1}\right]_{m}=\left[a_{2}\right]_{m}$ and $\left[b_{1}\right]_{m}=\left[b_{2}\right]_{m}$, then $\left[a_{1}\right]_{m}+\left[b_{1}\right]_{m}=\left[a_{2}\right]_{m}+\left[b_{2}\right]_{m}$
(Also accepted would be that $\left[a_{1}+b_{1}\right]_{m}=\left[a_{1}+b_{1}\right]_{m}$)
9) Formally define the set \mathbb{Q}. Use mathematical notation.
(20 points)

$$
\mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}
$$

10) Formally define the set $\mathbb{Q}[x]$. Use mathematical notation.
(20 points)

$$
\mathbb{Q}[x]=\left\{\sum_{k=0}^{n} a_{k} x^{k}: a_{k} \in \mathbb{Q}, n \in \mathbb{Z}_{\geq 0}\right\}
$$

Codename \qquad Fields and Rings, Page 3, Fall 2017
(Do not put your name on the test; write your name and codename on the code sheet)
11) Factor $6 x^{2}+7 x+2$.
(40 points)

There are a lot of methods for factoring trinomials that aren't monic. I prefer the "AC method":

Multiply 6 and 2 to get 12 .
Factor pairs of 12:
1 \& 12 (add to 13)
2 and 6 (add to 8)
3 and 4 (add to $7!!$)

$$
6 x^{2}+7 x+2=\frac{(6 x+3)(6 x+4)}{6}=(2 x+1)(3 x+2)
$$

12) Find the product below.

$$
\left(\sum_{r=0}^{50} r^{2} x^{r}\right)\left(\sum_{s=0}^{30} 3 s x^{s}\right)
$$

(20 points)

$$
\left(\sum_{r=0}^{50} r^{2} x^{r}\right)\left(\sum_{s=0}^{30} 3 s x^{s}\right)=\sum_{r=0}^{50}\left(\left(r^{2} \sum_{s=0}^{30} 3 s\right) x^{r+s}\right)=\sum_{s=0}^{30}\left(\sum_{r=0}^{50} r^{2}\right) 3 s x^{r+s}=\sum_{k=0}^{80} \sum_{l=0}^{k} l^{2} 3(k-l) x^{k}
$$

13) A polynomial is called monic if the leading term is one. Prove that the product of two monic polynomials is always monic.
(100 points)

Let f and g be monic polynomials. Then we can write:

$$
\begin{aligned}
& f=x^{n}+\sum_{\substack{k=0 \\
m-1}} a_{k} x^{k} \\
& g=x^{m}+\sum_{k=0}^{m-1} b_{k} x^{k}
\end{aligned}
$$

... for some $n, m \in \mathbb{Z}_{\geq 0}$ and appropriate coefficients a_{k} and b_{k}.

Then the product we see is also monic:

$$
f g=x^{n+m}+x^{n} \sum_{k=0}^{n-1} a_{k} x^{k}+x^{m} \sum_{k=0}^{m-1} b_{k} x^{k}+\left(\sum_{k=0}^{n-1} a_{k} x^{k}\right)\left(\sum_{k=0}^{m-1} b_{k} x^{k}\right)
$$

Codename \qquad Fields and Rings, Page 4, Fall 2017
(Do not put your name on the test; write your name and codename on the code sheet)
14) A polynomial in two variables can have both the variable x and the variable y. It is said to be homogeneous if every term has the same degree. For example, $3 x^{2} y-2 x^{3}+x y^{2}$ is homogeneous of degree 3. However, $3 x^{2} y-2 x^{2}+y$ is not homogeneous

Let f and g both be homogeneous polynomials. Show that their product, $f \cdot g$, is also homogeneous. (100 points)

Let f be a homogeneous polynomial of degree n. Thus we may write

$$
f=\sum_{k=0}^{n} a_{k} x^{k} y^{n-k}
$$

for some $a_{k} \in \mathbb{Q}$. Similarly for a homogeneous polynomial of degree m there are $b_{l} \in \mathbb{Q}$ so that

$$
g=\sum_{l=0}^{m} b_{l} x^{l} y^{m-l}
$$

Then the product is a homogeneous polynomial of degree $n+m$:

$$
f g=\left(\sum_{k=0}^{n} a_{k} x^{k} y^{n-k}\right)\left(\sum_{l=0}^{m} b_{l} x^{l} y^{m-l}\right)=\sum_{k=0}^{n} \sum_{l=0}^{m} a_{k} b_{l} x^{l+k} y^{n+m-l-k}
$$

15) Suppose $2 x \equiv y \bmod 100$ has a solution. Show the following two claims.
A) $2 \mid y$
(100 points)
$2 x \equiv y \bmod 100$
$\therefore 100 \mid 2 x-y$
$\therefore 100 k=2 x-y$ for some $k \in \mathbb{Z}$
$\therefore y=2 x-100 k=2(x-50 k)$
$\therefore 2 \mid y$
B) $x \equiv \frac{y}{2} \bmod 50$.
(100 points)
From the above question we see that $y=2(x-50 k)$.
$\therefore \frac{y}{2}=x-50 k$
$\therefore 50 k=x-\frac{y}{2}$
$\therefore x \equiv \frac{y}{2} \bmod 50$
