1) Prove the following theorems:
- T1
- T3
- T8
- T9
- T12
- T14a
- T16a
- T17a
(100 points each)

2) Let R be a commutative ring and S and T ideals of R. Define $J := \{a + b | a \in S, b \in T\}$. Prove that J is an ideal of R.
(100 points)

3) Compute $4a$ and a^2 in $\mathbb{Q}[x]$ for $a = 1 + 3x^2$.

4) Compute $4a$ and a^4 in \mathbb{Z}_7 for $a = 2$.
(100 points)

5) Find all the subrings of \mathbb{Z}_{12}.

6) Consider $\varphi : \mathbb{Z} \to 2\mathbb{Z}$ given by $\varphi(n) = 2n$. Explain why φ is not a ring homomorphism.
(100 points)

7) Write the number e^{in} in rectangular coordinates as $a + bi$.

8) Show that in $\mathbb{Q} \times \mathbb{Z}$, the elements $(2, -1)$ and $(4, 1)$ are associates.
(100 points)

9) Explain why a field is always a PID, practically by default.

10) Give a nice description of the ideal $\langle \sqrt{7} \rangle$ in the ring $\mathbb{Z}[\sqrt{7}]$.
(100 points)

11) Factor $x^3 - 2$ into irreducibles in $\mathbb{Q}[x]$.

12) Let \mathbb{F} be a field. Could the ring $\mathbb{F}[x]$ be a field? Why or why not?
(100 points)

13) Use the ring $R = \mathbb{Z}[\sqrt{2}]$ for this problem. Simplify the ideal $\langle 3 + 8\sqrt{2}, 7 \rangle$ in this ideal.
(100 points)