1) Prove the following theorems:

- T1
- T3
- T8
- T9
- T12
- T14a
- T16a
- T17a

(100 points each)

2) Let *R* be a commutative ring and *S* and *T* ideals of *R*. Define $J \coloneqq \{a + b | a \in S, b \in T\}$. Prove that *J* is an ideal of *R*. (100 points)

3) Compute 4a and a^2 in $\mathbb{Q}[x]$ for $a = 1 + 3x^2$. 4) Compute 4a and a^4 in \mathbb{Z}_7 for a = 2. (100 points)

5) Find all the subrings of Z₁₂.
6) Consider φ: Z: → 2Z given by φ(n) = 2n. Explain why φ is not a ring homomorphism. (100 points)

7) Write the number $e^{\frac{i\pi}{4}}$ in rectangular coordinates as a + bi. 8) Show that in $\mathbb{Q} \times \mathbb{Z}$, the elements (2, -1) and (4,1) are associates. (100 points)

9) Explain why a field is always a PID, practically by default. 10) Give a nice description of the ideal $\langle \sqrt{7} \rangle$ in the ring $\mathbb{Z}[\sqrt{7}]$. (100 points)

11) Factor $x^3 - 2$ into irreducibles in $\mathbb{Q}[x]$. 12) Let \mathbb{F} be a field. Could the ring $\mathbb{F}[x]$ be a field? Why or why not? (100 points)

13) Use the ring $R = \mathbb{Z}[\sqrt{2}]$ for this problem. Simplify the ideal $(3 + 8\sqrt{2}, 7)$ in this ideal. (100 points)