Name \qquad

1) Prove the following theorems:

- T1
- T3
- T8
- T9
- T12
- T14a
- T16a
- T17a

Theorem T1: Let a, b, and c be elements of a ring R. If $a+b=a+c$, then $b=c$.

Assume $a+b=a+c$
a has an additive inverse, call it d.
Call the additive identity e.
$\therefore d+a+b=d+a+c$
$\therefore e+b=e+c$
$\therefore b=c$

Theorem T3: Let R be a ring. If $a+0_{1}=a$ and $a+0_{2}=a$ for all elements $a \in R$, then $0_{1}=0_{2}$.

Assume $a+0_{1}=a$ and $a+0_{2}=a$ for all elements $a \in R$.
Therefore for some particular element $b \in R, b+0_{1}=b$ and $b+0_{2}=b$.
$\therefore b+0_{1}=b+0_{2}$
$\therefore 0_{1}=0_{2}$

Theorem T8: Let R be a ring. If R has a multiplicative identity, then it is unique.

Let 1_{a} and 1_{b} be multiplicative identities.
$\therefore 1_{a}=1_{a} 1_{b}=1_{b}$

Theorem T9: Let R be an integral domain and suppose $a \neq 0$. If $a b=a c$, then $b=c$.

Assume $a b=a c$
$\therefore a b-a c=0$
$\therefore a(b-c)=0$
$\therefore b-c=0 \quad$ (This is because R is an integral domain and $a \neq 0$)
$\therefore b=c$

Theorem T12: Let p be a prime number and $0 \neq x \in \mathbb{Z}_{p}$. Then $x^{p-1}=1$ in \mathbb{Z}_{p}.

Let $0 \leq a, b<p$. Then for $0<n<p$ we know that if $a n=a b$, then $a=b$. Hence the two sets of numbers below give all nonzero elements of \mathbb{Z}_{p}.

$$
\begin{gathered}
\{1,2,3, \ldots, p-1\} \\
\{x, 2 x, 3 x, 4 x, \ldots,(p-1) x\}
\end{gathered}
$$

$\therefore 1 \cdot 2 \cdots(p-1) \equiv x \cdot 2 x \cdot \cdots \cdot(p-1) x$
$\therefore(p-1)!\equiv x^{p-1}(p-1)!$
$\therefore 1 \equiv x^{p-1}$

Theorem T14a: Let R be a commutative ring with identity. Fix two elements $a, b \in R$. If $\langle a\rangle \subseteq\langle b\rangle$, then $a=b t$ for some $t \in R$.

Assume $\langle a\rangle \subseteq\langle b\rangle$
$\therefore a \in\langle b\rangle$
$\therefore a=b t$ for some $t \in R$

Theorem T16a: Let R be an integral domain and let $r, s \in R$. If $\langle r\rangle=\langle s\rangle$, then r and s are associates.

Assume $\langle r\rangle=\langle s\rangle$

$$
\therefore r \in\langle s\rangle
$$

$\therefore r=s k$ for some $k \in R$

$$
\therefore s \in\langle r\rangle
$$

$\therefore s=r k_{2}$ for some $k_{2} \in R$

$$
\begin{aligned}
& \therefore r=r k_{2} k \\
& \therefore k_{2} k=1
\end{aligned}
$$

Therefore r and s are associates. (Because $r=s k$ where k is a unit)

Theorem T17a: Let R be a commutative ring with unity. If R is a field then its only ideals are $\{0\}$ and R itself.

Assume R is a field.
Let I be an idea of R.
If $I \neq\{0\}$, then there is some nonzero element of I, call it x.
Because R is a field, x^{-1} exists.
$\therefore x^{-1} \cdot x \in I$
$\therefore 1 \in I$
$\therefore I=R$
2) Let R be a commutative ring and S and T ideals of R. Define $J:=\{a+b \mid a \in S, b \in T\}$. Prove that J is an ideal of R.

We must show that J is a subring that satisfies the stronger multiplication property: $x r \in J$ whenever $x \in J$ and $r \in R$.

Proof that $J \neq \varnothing$:
$0=0+0 \in J$

Proof that $x-y \in J$ whenever $x, y \in J$:
$x=a+b$ for some $a \in S$ and $b \in T$
$y=c+d$ for some $c \in S$ and $d \in T$
$x-y=a+b-(c+d)=(a-c)+(b-d) \in J$ because $a-c \in S$ and $b-d \in T$.

Proof that $x r \in J$ whenever $x \in J$ and $r \in R$:
$x=a+b$ for some $a \in S$ and $b \in T$
$x r=a r+b r \in J$ because $a r \in S$ and $b r \in T$.
3) Compute $4 a$ and a^{2} in $\mathbb{Q}[x]$ for $a=1+3 x^{2}$.
$4 a=4\left(1+3 x^{2}\right)=4+12 x^{2}$
$a^{2}=\left(1+3 x^{2}\right)^{2}=1+6 x^{2}+9 x^{4}$
4) Compute $4 a$ and a^{4} in \mathbb{Z}_{7} for $a=2$.
$4 a=4 \cdot 2=1$
$a^{4}=2 \cdot 2 \cdot 2 \cdot 2=4 \cdot 2 \cdot 2=1 \cdot 2=2$
5) Find all the subrings of \mathbb{Z}_{12}.
$\{0\},\langle 6\rangle,\langle 4\rangle,\langle 3\rangle,\langle 2\rangle, \mathbb{Z}_{12}$
6) Consider $\varphi: \mathbb{Z}: \rightarrow 2 \mathbb{Z}$ given by $\varphi(n)=2 n$. Explain why φ is not a ring homomorphism.

It does not satisfy the multiplication property. Consider, for instance:
$\varphi(3 \cdot 3)=\varphi(9)=18$
$\varphi(3) \varphi(3)=6 \cdot 6=36$
7) Write the number $e^{\frac{i \pi}{4}}$ in rectangular coordinates as $a+b i$.
$e^{\frac{i \pi}{4}}=\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}$
8) Show that in $\mathbb{Q} \times \mathbb{Z}$, the elements $(2,-1)$ and $(4,1)$ are associates.

$$
(2,-1) \cdot(2,-1)=(4,1)
$$

$(2,-1)$ is a unit because $2 \cdot \frac{1}{2}=1$ in \mathbb{Q} and $-1 \cdot-1=1$ in \mathbb{Z}.
9) Explain why a field is always a PID, practically by default.

A field has only two ideals (Theorem 17), each of those ideas are principle.
10) Give a nice description of the ideal $\langle\sqrt{7}\rangle$ in the ring $\mathbb{Z}[\sqrt{7}]$.

$$
\langle\sqrt{7}\rangle=\{\sqrt{7} x \mid x \in \mathbb{Z}[\sqrt{7}]\}=\{\sqrt{7} a+\sqrt{7}(b \sqrt{7}) \mid a, b \in \mathbb{Z}\}=\{7 b+\sqrt{7} a \mid a, b \in \mathbb{Z}\}
$$

This is the set of everything in $\mathbb{Z}[\sqrt{7}]$ that has a rational part divisible by 7 .
11) Factor $x^{3}-2$ into irreducibles in $\mathbb{Q}[x]$.

$$
x^{3}-2
$$

If we look at its roots, we get $x^{3}=2$. One solution over \mathbb{R} is $\sqrt[3]{2}$. The other two solutions are complex, oriented uniformly over the circle of radius $\sqrt[3]{2}$ on the complex plane. None of those three roots are rational, so this polynomial cannot be factored.
12) Let \mathbb{F} be a field. Could the ring $\mathbb{F}[x]$ be a field? Why or why not?

No, because x is not invertible.
13) Use the ring $R=\mathbb{Z}[\sqrt{2}]$ for this problem. Simplify the ideal $\langle 3+8 \sqrt{2}, 7\rangle$ in this ring.

$$
\langle 3+8 \sqrt{2}, 7\rangle
$$

First note that because $7 \in\langle 3+8 \sqrt{2}, 7\rangle$, so also $7 \sqrt{2}$ is.
$3+8 \sqrt{2}=(3+\sqrt{2})+7 \sqrt{2}$
$\therefore\langle 3+8 \sqrt{2}, 7\rangle=\langle 3+\sqrt{2}, 7\rangle$
Now note that $(3+\sqrt{2})(3-\sqrt{2})=9-2=7$. Hence 7 is a multiple of $3+\sqrt{2}$ and is thus redundant.
$\therefore\langle 3+\sqrt{2}, 7\rangle=\langle 3+\sqrt{2}\rangle$
$\therefore\langle 3+8 \sqrt{2}, 7\rangle=\langle 3+\sqrt{2}\rangle$

