1) Prove the following theorems:

- T1
- T3
- T8
- T9
- T12
- T14a
- T16a
- T17a

Theorem T1: Let a, b, and c be elements of a ring R. If a + b = a + c, then b = c.

```
Assume a + b = a + c

a has an additive inverse, call it d.

Call the additive identity e.

\therefore d + a + b = d + a + c

\therefore e + b = e + c

\therefore b = c
```

Theorem T3: Let *R* be a ring. If $a + 0_1 = a$ and $a + 0_2 = a$ for all elements $a \in R$, then $0_1 = 0_2$.

Assume $a + 0_1 = a$ and $a + 0_2 = a$ for all elements $a \in R$. Therefore for some particular element $b \in R$, $b + 0_1 = b$ and $b + 0_2 = b$. $\therefore b + 0_1 = b + 0_2$ $\therefore 0_1 = 0_2$

Theorem T8: Let *R* be a ring. If *R* has a multiplicative identity, then it is unique.

Let 1_a and 1_b be multiplicative identities. $\therefore 1_a = 1_a 1_b = 1_b$ **Theorem T9**: Let *R* be an integral domain and suppose $a \neq 0$. If ab = ac, then b = c.

Assume ab = ac $\therefore ab - ac = 0$ $\therefore a(b - c) = 0$ $\therefore b - c = 0$ (This is because *R* is an integral domain and $a \neq 0$) $\therefore b = c$

Theorem T12: Let p be a prime number and $0 \neq x \in \mathbb{Z}_p$. Then $x^{p-1} = 1$ in \mathbb{Z}_p .

Let $0 \le a, b < p$. Then for 0 < n < p we know that if an = ab, then a = b. Hence the two sets of numbers below give all nonzero elements of \mathbb{Z}_p .

$$\{1, 2, 3, \dots, p-1\}$$

$$\{x, 2x, 3x, 4x, \dots, (p-1)x\}$$

 $\therefore 1 \cdot 2 \cdot \dots \cdot (p-1) \equiv x \cdot 2x \cdot \dots \cdot (p-1)x$ $\therefore (p-1)! \equiv x^{p-1}(p-1)!$ $\therefore 1 \equiv x^{p-1}$

Theorem T14a: Let *R* be a commutative ring with identity. Fix two elements $a, b \in R$. If $\langle a \rangle \subseteq \langle b \rangle$, then a = bt for some $t \in R$.

Assume $\langle a \rangle \subseteq \langle b \rangle$ $\therefore a \in \langle b \rangle$ $\therefore a = bt$ for some $t \in R$ **Theorem T16a:** Let R be an integral domain and let $r, s \in R$. If $\langle r \rangle = \langle s \rangle$, then r and s are associates.

Assume $\langle r \rangle = \langle s \rangle$

 $\therefore r \in \langle s \rangle$ $\therefore r = sk \text{ for some } k \in R$

 $\therefore s \in \langle r \rangle$

 $\therefore s = rk_2$ for some $k_2 \in R$

$$\therefore r = rk_2k$$
$$\therefore k_2k = 1$$

Therefore r and s are associates. (Because r = sk where k is a unit)

Theorem T17a: Let *R* be a commutative ring with unity. If *R* is a field then its only ideals are $\{0\}$ and *R* itself.

Assume R is a field. Let I be an idea of R. If $I \neq \{0\}$, then there is some nonzero element of I, call it x. Because R is a field, x^{-1} exists. $\therefore x^{-1} \cdot x \in I$ $\therefore 1 \in I$ $\therefore I = R$ 2) Let *R* be a commutative ring and *S* and *T* ideals of *R*. Define $J \coloneqq \{a + b | a \in S, b \in T\}$. Prove that *J* is an ideal of *R*.

We must show that J is a subring that satisfies the stronger multiplication property: $xr \in J$ whenever $x \in J$ and $r \in R$.

Proof that $J \neq \emptyset$: $0 = 0 + 0 \in J$ Proof that $x - y \in J$ whenever $x, y \in J$: x = a + b for some $a \in S$ and $b \in T$ y = c + d for some $c \in S$ and $d \in T$ $x - y = a + b - (c + d) = (a - c) + (b - d) \in J$ because $a - c \in S$ and $b - d \in T$.

Proof that $xr \in J$ whenever $x \in J$ and $r \in R$: x = a + b for some $a \in S$ and $b \in T$ $xr = ar + br \in J$ because $ar \in S$ and $br \in T$. 3) Compute 4a and a^2 in $\mathbb{Q}[x]$ for $a = 1 + 3x^2$.

 $4a = 4(1 + 3x^2) = 4 + 12x^2$ $a^2 = (1 + 3x^2)^2 = 1 + 6x^2 + 9x^4$

4) Compute 4a and a^4 in \mathbb{Z}_7 for a = 2.

 $4a = 4 \cdot 2 = 1$ $a^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 4 \cdot 2 \cdot 2 = 1 \cdot 2 = 2$

5) Find all the subrings of \mathbb{Z}_{12} .

 $\{0\}, \langle 6 \rangle, \langle 4 \rangle, \langle 3 \rangle, \langle 2 \rangle, \mathbb{Z}_{12}$

6) Consider $\varphi: \mathbb{Z}: \to 2\mathbb{Z}$ given by $\varphi(n) = 2n$. Explain why φ is not a ring homomorphism.

It does not satisfy the multiplication property. Consider, for instance: $\varphi(3 \cdot 3) = \varphi(9) = 18$ $\varphi(3)\varphi(3) = 6 \cdot 6 = 36$

7) Write the number $e^{\frac{i\pi}{4}}$ in rectangular coordinates as a + bi.

$$e^{\frac{i\pi}{4}} = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}$$

8) Show that in $\mathbb{Q} \times \mathbb{Z}$, the elements (2, -1) and (4, 1) are associates.

$$(2,-1) \cdot (2,-1) = (4,1)$$

(2,-1) is a unit because $2 \cdot \frac{1}{2} = 1$ in \mathbb{Q} and $-1 \cdot -1 = 1$ in \mathbb{Z} .

9) Explain why a field is always a PID, practically by default.

A field has only two ideals (Theorem 17), each of those ideas are principle.

10) Give a nice description of the ideal $\langle \sqrt{7} \rangle$ in the ring $\mathbb{Z}[\sqrt{7}]$.

 $\langle \sqrt{7} \rangle = \{\sqrt{7}x | x \in \mathbb{Z}[\sqrt{7}]\} = \{\sqrt{7}a + \sqrt{7}(b\sqrt{7}) | a, b \in \mathbb{Z}\} = \{7b + \sqrt{7}a | a, b \in \mathbb{Z}\}$ This is the set of everything in $\mathbb{Z}[\sqrt{7}]$ that has a rational part divisible by 7.

11) Factor $x^3 - 2$ into irreducibles in $\mathbb{Q}[x]$.

$$x^3 - 2$$

If we look at its roots, we get $x^3 = 2$. One solution over \mathbb{R} is $\sqrt[3]{2}$. The other two solutions are complex, oriented uniformly over the circle of radius $\sqrt[3]{2}$ on the complex plane. None of those three roots are rational, so this polynomial cannot be factored.

12) Let \mathbb{F} be a field. Could the ring $\mathbb{F}[x]$ be a field? Why or why not?

No, because x is not invertible.

13) Use the ring $R = \mathbb{Z}[\sqrt{2}]$ for this problem. Simplify the ideal $(3 + 8\sqrt{2}, 7)$ in this ring.

 $\langle 3 + 8\sqrt{2}, 7 \rangle$

First note that because $7 \in \langle 3 + 8\sqrt{2}, 7 \rangle$, so also $7\sqrt{2}$ is. $3 + 8\sqrt{2} = (3 + \sqrt{2}) + 7\sqrt{2}$ $\therefore \langle 3 + 8\sqrt{2}, 7 \rangle = \langle 3 + \sqrt{2}, 7 \rangle$

Now note that $(3 + \sqrt{2})(3 - \sqrt{2}) = 9 - 2 = 7$. Hence 7 is a multiple of $3 + \sqrt{2}$ and is thus redundant. $\therefore \langle 3 + \sqrt{2}, 7 \rangle = \langle 3 + \sqrt{2} \rangle$

 $\therefore \langle 3 + 8\sqrt{2}, 7 \rangle = \langle 3 + \sqrt{2} \rangle$