Name \qquad Fields and Rings, Test 3, Fall 2017

1) Prove the following theorems:

- T20
- T23
- T24
- T25b
- T28a
- T30a
(100 points each)

2) Define $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ via $\varphi(a, b)=a+b$. Is φ a ring homomorphism? Justify your answer.
3) Define $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}_{6}$ via $\varphi(a, b)=[a+b]_{6}$. Is φ a ring homomorphism? Justify your answer.
4) Define $\varphi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]$ via $\varphi(f)=\frac{d}{d x} f$. Is φ a ring homomorphism? Justify your answer. (100 points)
5) Let S be the ring of all real-valued sequences. Define $\varphi: S \rightarrow S$ as given below. Find $\operatorname{ker}(\varphi)$ and justify your answer.

$$
\varphi\left(\left(s_{1}, s_{2}, s_{3}, \ldots\right)\right)=\left(s_{2}, s_{3}, s_{4}, \ldots\right)
$$

(100 points)
6) Let R and S be rings with a homomorphism $\varphi: R \rightarrow S$ between them. Find a formula for $\varphi\left(a^{n}\right)$ and justify your answer.

