Name $\qquad$

## Part 1: Basic Knowledge

1) Let $a$ and $b$ be integers. What does $a \mid b$ mean? Be precise. (4 points)
$b=a k$ for some $k \in \mathbb{Z}$
2) Let $f, g \in \mathbb{R}[x]$. State the division equation, also known as the remainder theorem. (4 points) $f=g q+r$ for some $q, r \in \mathbb{R}[x]$ where $\operatorname{deg}(r)<\operatorname{deg}(g)$

Or
$g=f q+r$ for some $q, r \in \mathbb{R}[x]$ where $\operatorname{deg}(r)<\operatorname{deg}(f)$
3) Let $f=\sum_{k=0}^{n} a_{k} x^{x}$. What does the rational root theorem say? Be precise. (8 points)

If $f\left(\frac{p}{q}\right)=0$ where $p, q \in \mathbb{Z}$, then $p \mid a_{0}$ and $q \mid a_{n}$.

## Part 2: Basic Skills and Concepts

4) Answer each of the following as irreducible (I), reducible (R), or not applicable ( $N$ ) in $\mathbb{Z}[x]$. (8 points)

I $\mathrm{R} N$ a) $f=0 \quad \mathrm{~N}$
। $\mathrm{R} N$ b) $f=1 \quad \mathrm{~N}$
I R N c) $f=5 \quad N$
| R N d) $f=x$
| $\mathrm{R} N$ e) $f=x^{2} \quad \mathrm{R}$
। R N f) $f=x^{2}-25 \quad \mathrm{R}$
। R N g) $f=x^{2}+25$
। R N h) $f=\left(x^{2}-2\right)\left(x^{2}-4\right) \quad \mathrm{R}$
I $\mathrm{R} N$ i) $f=\left(x^{2}+2\right)\left(x^{2}+4\right) \quad \mathrm{R}$
I R N j) $f=x^{123}-1 \quad \mathrm{R}$
Grading note: (b) and (c) were not marked incorrect because I felt like we didn't address this point enough during class.
5) Let $f=3 x^{2}-2 x+1$. Give each of the following: (4 points)
a) What is the degree of $f$ ?

2
b) List the coefficients, separated by commas.
$3,-2,1$
c) List the terms, separated by commas.
$3 x^{2},-2 x, 1$
6) To which of the polynomials below does Eisenstein's theorem apply? $\mathrm{Y}=\mathrm{yes}, \mathrm{N}=\mathrm{no}$ (4 points)
$Y \mathrm{~N}$ a) $\quad x^{6}+2 x^{4}+4 x^{2}+6 \quad Y$
$Y \mathrm{~N}$ b) $x^{6}+2 x^{4}+4 x^{2}+8 \quad \mathrm{~N}$
$Y \mathrm{~N}$ c) $2 x^{6}+4 x^{4}+6 x^{2}+10 \quad \mathrm{~N}$
$Y \mathrm{~N}$ d) $2 x^{6}+6 x^{4}+12 x^{2}+24 \quad \mathrm{Y}$
Y N e) $x^{2}+1 \quad \mathrm{~N}$
7) Write down an expression that gives the $x^{17}$ term of the product below. (4 points)

$$
\begin{gathered}
\left(\sum_{k=0}^{40} 2^{k} x^{k}\right)\left(\sum_{l=0}^{32} 3^{l} x^{l}\right) \\
\sum_{j=0}^{17} 2^{j} 3^{17-j} x^{17} \text { or } \sum_{j=0}^{17} 2^{17-j} 3^{j} x^{17}
\end{gathered}
$$

8) Divide $x^{3}+1$ by $x^{2}-4$. State your answer using the division equation. (4 points)
[Work is difficult to type]

$$
x^{3}+1=\left(x^{2}-4\right)(x)+(4 x+1)
$$

9) Find the GCD of 15 and 70 using the Euclidean Algorithm. No credit will be given if you solve it by inspection and not the EA. (4 points)
$17=15 \cdot 4+10$
$15=10 \cdot 1+5$
$10=5 \cdot 2+0$
$\operatorname{gcd}(15,70)=5$
10) Use the Extended Euclidean Algorithm to solve $15 x+70 y=5$. No credit will be given if you solve it by inspection and not the EEA. (4 points)
$10=70-15 \cdot 4$
$5=15-10=15-(70-15 \cdot 4)=15 \cdot 5-70$
$x=5, y=-1$
11) Obtain a new function by clearing all the denominators of the function below. (4 points)

$$
\begin{array}{r}
f(x)=\frac{1}{2} x^{3}+\frac{1}{3} x^{2}+\frac{5}{6} x-\frac{1}{2} \\
g(x)=6 f(x)=3 x^{3}+2 x^{2}+5 x-3
\end{array}
$$

Or

$$
h(x)=72 f(x)=36 x^{3}+24 x^{2}+60 x-36
$$

Odd that a lot of people chose to use $36=2 \cdot 3 \cdot 6$. There's no theoretical reason why you would want to use 36 . On the other hand, 6 is useful because it is the LCM and 72 is useful because it is the product. But 36 ? Weird and useless, but I gave full credit for it because it technically works.

## Part 3: Proofs

12) Let $f, g \in \mathbb{Z}[x]$. Prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ (16 points)

Write out notation for $f$ and $g$ as below, where $n, m, a_{k}, b_{l} \in \mathbb{Z}$ and $n, m \geq 0$.

$$
\begin{gathered}
f=\sum_{k=0}^{n} a_{k} x^{k} \\
g=\sum_{l=0}^{n} b_{l} x^{l} \\
f g=\left(\sum_{k=0}^{n} a_{k} x^{k}\right)\left(\sum_{l=0}^{n} b_{l} x^{l}\right)=a_{n} b_{m} x^{n+m}+\left(a_{n-1} b_{m}+a_{n} b_{m-1}\right) x^{n+m-1}+\cdots+a_{0} b_{0}
\end{gathered}
$$

From this expansion, we see that the degree of the right hand side, and thus the degree of $f g$ is $n+m$.
13) Let $f \in \mathbb{Z}[x]$, and write $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Assume If $p$, and $q$ are coprime integers such that $f\left(\frac{p}{q}\right)=0$. State and prove half of the rational root theorem. (16 points)

Half of the rational root theorem is that $p \mid a_{0}$.

$$
\begin{gathered}
f\left(\frac{p}{q}\right)=a_{0}+a_{1} \frac{p}{q}+\cdots+a_{n}\left(\frac{p}{q}\right)^{n} \\
0=a_{0}+a_{1} \frac{p}{q}+\cdots+a_{n}\left(\frac{p}{q}\right)^{n} \\
0=a_{0} q^{n}+a_{1} p q^{n-1}+\cdots+a_{n} p^{n} \\
a_{0} q^{n}=-a_{1} p q^{n-1}-\cdots-a_{n} p^{n}
\end{gathered}
$$

Clearly $p \mid-a_{1} p q^{n-1}-\cdots-a_{n} p^{n}$
Thus $p \mid a_{0} q^{n}$
However, $p \nmid q^{n}$
Therefore $p \mid a_{0}$
(You could have also done the other half)
14) Let $f, g_{1}, g_{2}, g_{3} \in \mathbb{Z}[x]$ and assume $f$ is prime. Prove that if $f \mid g_{1} g_{2} g_{3}$, then either $f\left|g_{1}, f\right| g_{2}$, or $f \mid g_{3}$. (16 points)

Assume $f \mid g_{1} g_{2} g_{3}$.
$\therefore f \mid\left(g_{1} g_{2}\right) g_{3}$
$\therefore f \mid g_{1} g_{2}$ or $g \mid f_{3}$ because $f$ is prime.
$\therefore f \mid g_{1}$ or $f \mid g_{2}$ or $f \mid g_{3}$ because $f$ is prime.

