Part 1: Basic Knowledge

1) Let *a* an element of \mathbb{Z}_n . What does it means for *a* to be <u>invertible</u>? Precisely state the definition. (5 points)

2) What is a <u>power series</u>? Give an expression for an arbitrary element of $\mathbb{R}[x]$. (5 points)

3) Let \otimes be a binary operation on a set *S*. What does it mean for *S* to be <u>commutative</u>? Precisely state the definition. (5 points)

4) Consider multiplication in \mathbb{Z}_n . What does it mean for multiplication to be <u>well defined</u>? Precisely state the definition. (5 points)

Part 2: Basic Skills and Concepts

5) Find the product below, express your answer using the sum-of-degree method. (5 points)

$$\left(\sum_{k=0}^{\infty} 2^k x^k\right) \left(\sum_{k=0}^{\infty} 3^k x^k\right)$$

6) Find the multiplicative inverse of $\sum_{k=0}^{\infty} \frac{2^k x^k}{k!}$. (5 points)

7) Find $4^{-1} \mod 11$. (5 points)

8) Below is a derivation of the quadratic formula. It does not work in \mathbb{Z}_n . Which is the first step that is not guaranteed to work in \mathbb{Z}_n and why? (5 points)

$$ax^{2} + bx + c = 0$$

$$\left(\sqrt{a}x + \frac{b}{2\sqrt{a}}\right)^{2} + c - \frac{b^{2}}{4a} = 0$$

$$\left(\sqrt{a}x + \frac{b}{2\sqrt{a}}\right)^{2} = \frac{b^{2}}{4a} - c$$

$$\left(\sqrt{a}x + \frac{b}{2\sqrt{a}}\right)^{2} = \frac{b^{2} - 4ac}{4a}$$

$$\sqrt{a}x + \frac{b}{2\sqrt{a}} = \frac{\pm\sqrt{b^{2} - 4ac}}{2\sqrt{a}}$$

$$\sqrt{a}x = -\frac{b}{2\sqrt{a}} \pm \frac{\sqrt{b^{2} - 4ac}}{2\sqrt{a}}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

9) Let A, and B be square matrices. Solve AX + X = B for X. Assume the needed inverse exists. (5 points)

10) Find 2 \otimes 1, given the binary operation below. (5 points)

\otimes	1	2	3
1	1	1	2
2	3	1	1
3	2	3	2

Part 3: Proofs

Do not use any advanced theorems that would create circular logic.

11) Let A and B be invertible matrices in $\mathbb{R}^{n \times n}$. Prove that $(AB)^{-1}$ exists. (15 points)

12) Let *S* be a set with a binary operation \otimes . If $a \otimes e = e \otimes a = a$ and $a \otimes f = f \otimes a = a$ for all $a \in S$, Prove that e = f. (15 points)

13) Let R be a ring and $a, b \in R$. Prove that -(-a) = a. (15 points)

14) Let p be prime and $a, b \in \mathbb{Z}_p$. Prove that if $ab \equiv 0$, then either $a \equiv 0$ or $b \equiv 0$. This is called the zero product property. (15 points)