Name \qquad Test 2, Fall 2021

Part 1: Basic Knowledge

1) Let a an element of \mathbb{Z}_{n}. What does it means for a to be invertible? Precisely state the definition. (5 points)
2) What is a power series? Give an expression for an arbitrary element of $\mathbb{R} \llbracket x \rrbracket$. (5 points)
3) Let \otimes be a binary operation on a set S. What does it mean for S to be commutative? Precisely state the definition. (5 points)
4) Consider multiplication in \mathbb{Z}_{n}. What does it mean for multiplication to be well defined? Precisely state the definition. (5 points)
\qquad

Part 2: Basic Skills and Concepts

5) Find the product below, express your answer using the sum-of-degree method. (5 points)

$$
\left(\sum_{k=0}^{\infty} 2^{k} x^{k}\right)\left(\sum_{k=0}^{\infty} 3^{k} x^{k}\right)
$$

6) Find the multiplicative inverse of $\sum_{k=0}^{\infty} \frac{2^{k} x^{k}}{k!}$. (5 points)
7) Find $4^{-1} \bmod$ 11. (5 points)
8) Below is a derivation of the quadratic formula. It does not work $i n \mathbb{Z}_{n}$. Which is the first step that is not guaranteed to work in \mathbb{Z}_{n} and why? (5 points)
$a x^{2}+b x+c=0$
$\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}+c-\frac{b^{2}}{4 a}=0$
$\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}=\frac{b^{2}}{4 a}-c$
$\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}=\frac{b^{2}-4 a c}{4 a}$
$\sqrt{a} x+\frac{b}{2 \sqrt{a}}=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 \sqrt{a}}$
$\sqrt{a} x=-\frac{b}{2 \sqrt{a}} \pm \frac{\sqrt{b^{2}-4 a c}}{2 \sqrt{a}}$
$x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
9) Let A, and B be square matrices. Solve $A X+X=B$ for X. Assume the needed inverse exists. (5 points)
10) Find $2 \otimes 1$, given the binary operation below. (5 points)

\otimes	1	2	3
1	1	1	2
2	3	1	1
3	2	3	2

Part 3: Proofs

Do not use any advanced theorems that would create circular logic.
11) Let A and B be invertible matrices in $\mathbb{R}^{n \times n}$. Prove that $(A B)^{-1}$ exists. (15 points)
12) Let S be a set with a binary operation \otimes. If $a \otimes e=e \otimes a=a$ and $a \otimes f=f \otimes a=a$ for all $a \in S$, Prove that $e=f$. (15 points)
13) Let R be a ring and $a, b \in R$. Prove that $-(-a)=a$. (15 points)
14) Let p be prime and $a, b \in \mathbb{Z}_{p}$. Prove that if $a b \equiv 0$, then either $a \equiv 0$ or $b \equiv 0$. This is called the zero product property. (15 points)

