Part 1: Basic Knowledge

1) Let a an element of \mathbb{Z}_n . What does it means for a to be <u>invertible</u>? Precisely state the definition. ^(5 points)

a is invertible if there is some $b \in \mathbb{Z}_n$ such that $ab \equiv 1$.

2) What is a <u>power series</u>? Give an expression for an arbitrary element of $\mathbb{R}[x]$. (5 points)

3) Let \otimes be a binary operation on a set *S*. What does it mean for *S* to be <u>commutative</u>? Precisely state the definition. (5 points)

 $a \otimes b = b \otimes a$ for all $a, b \in S$

4) Consider multiplication in \mathbb{Z}_n . What does it mean for multiplication to be <u>well defined</u>? Precisely state the definition. (5 points)

Multiplication is well defined if for all $a_1, a_2, b_1, b_2 \in \mathbb{Z}_n$: If $a_1 \equiv a_2$ and $b_1 \equiv b_2$, then $a_1b_1 \equiv a_2b_2$.

Part 2: Basic Skills and Concepts

5) Find the product below, express your answer using the sum-of-degree method. (5 points)

 $\left(\sum_{k=0}^{\infty} 2^k x^k\right) \left(\sum_{k=0}^{\infty} 3^k x^k\right)$

 $\sum_{d=0}^{\infty} \sum_{l=0}^{d} 2^l 3^{d-l} x^d$

6) Find the multiplicative inverse of $\sum_{k=0}^{\infty} \frac{2^k x^k}{k!}$. (5 points)

Note that $\sum_{k=0}^{\infty} \frac{2^k x^k}{k!} = e^{2x}$, which has multiplicative inverse $e^{-2x} = \sum_{k=0}^{\infty} \frac{(-2)^k x^k}{k!}$

7) Find $4^{-1} \mod 11$. (5 points)

3

8) Below is a derivation of the quadratic formula. It does not work in \mathbb{Z}_n . Which is the first step that is not guaranteed to work in \mathbb{Z}_n and why? (5 points)

 $ax^{2} + bx + c = 0$ $\left(\sqrt{a}x + \frac{b}{2\sqrt{a}}\right)^{2} + c - \frac{b^{2}}{4a} = 0$ This line for one of four reasons:

- We might not be able to divide by 2.
- We might not be able to divide by 4.
- We might not be able to divide by *a*.
- We might not be able to define \sqrt{a} .

$$\left(\sqrt{ax} + \frac{b}{2\sqrt{a}}\right)^2 = \frac{b^2}{4a} - c$$

$$\left(\sqrt{ax} + \frac{b}{2\sqrt{a}}\right)^2 = \frac{b^2 - 4ac}{4a}$$

$$\sqrt{ax} + \frac{b}{2\sqrt{a}} = \frac{\pm\sqrt{b^2 - 4ac}}{2\sqrt{a}}$$

$$\sqrt{ax} = -\frac{b}{2\sqrt{a}} \pm \frac{\sqrt{b^2 - 4ac}}{2\sqrt{a}}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

9) Solve AX + X = B for X. Assume the needed inverse exists. (5 points)

(A+I)X = B $X = (A+I)^{-1}B$

10) Find $2 \otimes 1$, given the binary operation below. (5 points)

\otimes	1	2	3
1	1	1	2
2	3	1	1
3	2	3	2

 $2 \otimes 1 = 3$

Part 3: Proofs

Do not use any advanced theorems that would create circular logic.

11) Let A and B be invertible matrices in $\mathbb{R}^{n \times n}$. Prove that $(AB)^{-1}$ exists. (15 points)

The inverse is $B^{-1}A^{-1}$ as seen below:

 $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AIA^{-1} = AA^{-1} = I$

We had a theorem that a right inverse is also a left inverse. Or you just should repeat the process on the left as well.

12) Let *S* be a set with a binary operation \otimes . If $a \otimes e = e \otimes a = a$ and $a \otimes f = f \otimes a = a$ for all $a \in S$, Prove that e = f. (15 points)

In $a \otimes e = a$, take a = f to get $f \otimes e = f$. In $f \otimes a = a$, take a = e to get $f \otimes e = e$.

Combine these two equations together via the transitive property to obtain: $f = f \otimes e = e$

13) Let *R* be a ring and $a, b \in R$. Prove that -(-a) = a. (15 points)

Proof 1:

We know that a + (-a) = 0. $\therefore (a + (-a)) + (-(-a)) = -(-a)$ Add -(-a) to both sides $\therefore a + ((-a) + (-(-a))) = -(-a)$ Associative property $\therefore a + 0 = -(-a)$ Definition of additive inverse $\therefore a = -(-a)$ Definition of additive identity

Proof 2:

We know that $0 = 0$.	
$\therefore 0 = a + (-a)$	Definition of additive inverse.
$\therefore 0 - (-a) = a + (-a) - (-a)$	Add $-(-a)$ to both sides.
$\therefore -(-a) = a + 0$	Definition of additive inverse.
$\therefore -(-a) = a$	Definition of additive identity.

Proof 3:

a + (-a) = 0	Definition of additive inverse.
-a + a = 0	Commutative property
$\therefore -(-a) = a$	Definition of additive inverse of $-a$.

14) Let p be prime and $a, b \in \mathbb{Z}_p$. Prove that if $ab \equiv 0$, then either $a \equiv 0$ or $b \equiv 0$. This is called the zero product property. (15 points)

Assume $ab \equiv 0$

 $\therefore p | ab$ Theorem relating mods and division. $\therefore p | a \text{ or } p | b$ Definition of prime. $\therefore a \equiv 0 \text{ or } b \equiv 0$.Theorem relating mods and division.