Name \qquad Test 2, Fall 2021

Part 1: Basic Knowledge

1) Let a an element of \mathbb{Z}_{n}. What does it means for a to be invertible? Precisely state the definition. (5 points)
a is invertible if there is some $b \in \mathbb{Z}_{n}$ such that $a b \equiv 1$.
2) What is a power series? Give an expression for an arbitrary element of $\mathbb{R} \llbracket x \rrbracket$. (5 points)

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

3) Let \otimes be a binary operation on a set S. What does it mean for S to be commutative? Precisely state the definition. (5 points)

$$
a \otimes b=b \otimes a \text { for all } a, b \in S
$$

4) Consider multiplication in \mathbb{Z}_{n}. What does it mean for multiplication to be well defined? Precisely state the definition. (5 points)

Multiplication is well defined if for all $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}_{n}$:

$$
\text { If } a_{1} \equiv a_{2} \text { and } b_{1} \equiv b_{2}, \text { then } a_{1} b_{1} \equiv a_{2} b_{2}
$$

\qquad

Part 2: Basic Skills and Concepts

5) Find the product below, express your answer using the sum-of-degree method. (5 points)

$$
\begin{aligned}
&\left(\sum_{k=0}^{\infty} 2^{k} x^{k}\right)\left(\sum_{k=0}^{\infty} 3^{k} x^{k}\right) \\
& \sum_{d=0}^{\infty} \sum_{l=0}^{d} 2^{l} 3^{d-l} x^{d}
\end{aligned}
$$

6) Find the multiplicative inverse of $\sum_{k=0}^{\infty} \frac{2^{k} x^{k}}{k!}$. (5 points)

Note that $\sum_{k=0}^{\infty} \frac{2^{k} x^{k}}{k!}=e^{2 x}$, which has multiplicative inverse $e^{-2 x}=\sum_{k=0}^{\infty} \frac{(-2)^{k} x^{k}}{k!}$
7) Find $4^{-1} \bmod 11$. (5 points)

3
8) Below is a derivation of the quadratic formula. It does not work in \mathbb{Z}_{n}. Which is the first step that is not guaranteed to work in \mathbb{Z}_{n} and why? (5 points)
$a x^{2}+b x+c=0$ $\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}+c-\frac{b^{2}}{4 a}=0$ This line for one of four reasons:

- We might not be able to divide by 2 .
- We might not be able to divide by 4 .
- We might not be able to divide by a.
- We might not be able to define \sqrt{a}.
$\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}=\frac{b^{2}}{4 a}-c$
$\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}=\frac{b^{2}-4 a c}{4 a}$
$\sqrt{a} x+\frac{b}{2 \sqrt{a}}=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 \sqrt{a}}$
$\sqrt{a} x=-\frac{b}{2 \sqrt{a}} \pm \frac{\sqrt{b^{2}-4 a c}}{2 \sqrt{a}}$
$x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

9) Solve $A X+X=B$ for X. Assume the needed inverse exists. (5 points)
$(A+I) X=B$
$X=(A+I)^{-1} B$
10) Find $2 \otimes 1$, given the binary operation below. (5 points)

\otimes	1	2	3
1	1	1	2
2	3	1	1
3	2	3	2

$2 \otimes 1=3$

Part 3: Proofs

Do not use any advanced theorems that would create circular logic.
11) Let A and B be invertible matrices in $\mathbb{R}^{n \times n}$. Prove that $(A B)^{-1}$ exists. (15 points)

The inverse is $B^{-1} A^{-1}$ as seen below:

$$
(A B)\left(B^{-1} A^{-1}\right)=A B B^{-1} A^{-1}=A I A^{-1}=A A^{-1}=I
$$

We had a theorem that a right inverse is also a left inverse. Or you just should repeat the process on the left as well.
12) Let S be a set with a binary operation \otimes. If $a \otimes e=e \otimes a=a$ and $a \otimes f=f \otimes a=a$ for all $a \in S$, Prove that $e=f$.(15 points)

In $a \otimes e=a$, take $a=f$ to get $f \otimes e=f$.
$\ln f \otimes a=a$, take $a=e$ to get $f \otimes e=e$.

Combine these two equations together via the transitive property to obtain:
$f=f \otimes e=e$
13) Let R be a ring and $a, b \in R$. Prove that $-(-a)=a$. (15 points)

Proof 1:
We know that $a+(-a)=0$.
$\therefore(a+(-a))+(-(-a))=-(-a) \quad$ Add $-(-a)$ to both sides
$\therefore a+((-a)+(-(-a)))=-(-a) \quad$ Associative property
$\therefore a+0=-(-a)$
Definition of additive inverse
$\therefore a=-(-a) \quad$ Definition of additive identity

Proof 2:
We know that $0=0$.
$\therefore 0=a+(-a) \quad$ Definition of additive inverse.
$\therefore 0-(-a)=a+(-a)-(-a) \quad$ Add $-(-a)$ to both sides.
$\therefore-(-a)=a+0 \quad$ Definition of additive inverse.
$\therefore-(-a)=a \quad$ Definition of additive identity.

Proof 3:
$a+(-a)=0 \quad$ Definition of additive inverse.
$-a+a=0 \quad$ Commutative property
$\therefore-(-a)=a \quad$ Definition of additive inverse of $-a$.
14) Let p be prime and $a, b \in \mathbb{Z}_{p}$. Prove that if $a b \equiv 0$, then either $a \equiv 0$ or $b \equiv 0$. This is called the zero product property. (15 points)

Assume $a b \equiv 0$
$\therefore p \mid a b \quad$ Theorem relating mods and division.
$\therefore p \mid a$ or $p \mid b \quad$ Definition of prime.
$\therefore a \equiv 0$ or $b \equiv 0$. Theorem relating mods and division.

