Part 1: Basic Knowledge

1) Let R be a ring. What does it mean for addition to be <u>closed</u>? (5 points)

2) Let R be a ring and S a subset of R. State one of the subring criterions. (5 points)

3) Let R be a ring with unity. What is the definition of $\mathbf{1}_R$ that makes it so special? (5 points)

4) Let R be a ring and S a subring. What more does it take for S to be an ideal? (5 points)

Part 2: Basic Skills and Concepts

5) Consider the ring $\mathbb{Z}_{24}.$ Find $\langle 4\rangle+3,$ what is it? (5 points)

6) Let R be an integral domain with unity. True or false: $\langle 2_R \rangle$ is always a maximal ideal, and why? (5 points)

7) Place these ideals into the same subring tree on the ring $R = \mathbb{R}[x, y]$. Note that they are not all distinct. (5 points)

a. $\langle 0 \rangle$ b. $\langle 1 \rangle$ c. $\langle 2 \rangle$ d. $\langle x \rangle$ e. $\langle x + 1 \rangle$ f. $\langle x, x + 1 \rangle$ g. $\langle y \rangle$ h. $\langle y^2 \rangle$ i. $\langle xy \rangle$ 8) Let R be a ring with unity. Define $2_R \coloneqq 1_R + 1_R$. In most rings, $2_R \neq 1_R$. What is the condition required to guarantee that $2_R \neq 1_R$? (5 points)

Part 3: Proofs

Do not use any advanced theorems that would create circular logic.

9) Let R be an integral domain. State and prove what is known as the cancellation law. (20 points)

10) Let R be an integral domain with unity and let $a \in R$ be prime. Prove that a is also irreducible. (20 points)

11) Let *R* be a commutative ring with unity. Fix two elements $a, b \in R$. Prove that if a = bt for some $t \in R$, then $\langle a \rangle \subseteq \langle b \rangle$. (20 points)