Part 1: Basic Knowledge

1) Let R be a ring. What does it mean for addition to be <u>closed</u>? (5 points)

If $a, b \in R$, then $a + b \in R$.

2) Let R be a ring and S a subset of R. State one of the subring criterions. (5 points)

S is a ring iff all of the following are satisfied:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$ (Closed under addition)
- 3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)
- 4. $a \in S \Rightarrow -a \in S$ (Closed under additive inverses)

Or iff all of the following are satisfied:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a b \in S$ (Closed under subtraction)
- 3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)

Or iff all of the following are satisfied:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$ (Closed under addition)
- 3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)
- 4. *S* is finite.

3) Let R be a ring with unity. What is the definition of $\mathbf{1}_R$ that makes it so special? (5 points)

Let $r \in R$. $1_R r = r 1_R = r$ for all $r \in R$.

Note that we need both directions because we are *not* given that R is commutative.

4) Let R be a ring and S a subring. What more does it take for S to be an ideal? (5 points)

For all $s \in S$ and $r \in R$, both $sr \in S$ and $rs \in S$.

Part 2: Basic Skills and Concepts

5) Consider the ring \mathbb{Z}_{24} . Find $\langle 4 \rangle + 3$, what is it? (5 points)

If we write $\mathbb{Z}_{24} = \{0, 1, 2, 3, 4, \dots, 23\}$, then we get: $\langle 4 \rangle = \{0, 4, 8, 12, 16, 20\}$ $\langle 4 \rangle + 3 = \{3, 7, 11, 15, 19, 23\}$

6) Let R be an integral domain with unity. True or false: $\langle 2_R \rangle$ is always a maximal ideal, and why? (5 points) False. Consider a counterexample: \mathbb{R} , because $\langle 2_R \rangle = \mathbb{R}$ and so is not maximal.

Or go the other way, consider $\mathbb{Z}[x]$, in this case $\langle 2_R \rangle$ is not maximal because $\langle 2_R \rangle \subseteq \langle 2, x \rangle$.

7) Place these ideals into the same subring tree on the ring $R = \mathbb{R}[x, y]$. Note that they are not all distinct. (5 points)

- a. $\langle 0 \rangle$ b. $\langle 1 \rangle$ c. $\langle 2 \rangle$ d. $\langle x \rangle$ e. $\langle x + 1 \rangle$ f. $\langle x, x + 1 \rangle$ g. $\langle y \rangle$ h. $\langle y^2 \rangle$
- i. $\langle xy \rangle$

8) Let R be a ring with unity. Define $2_R \coloneqq 1_R + 1_R$. In most rings, $2_R \neq 1_R$. What is the condition required to guarantee that $2_R \neq 1_R$? (5 points)

 $\mathbf{0}_R \neq \mathbf{1}_R$, or equivalently that R is nontrivial.

Part 3: Proofs

Do not use any advanced theorems that would create circular logic.

9) Let R be an integral domain. State and prove what is known as the cancellation law. (20 points)

Let $a, b, c \in R$ such that $a \neq 0$. If ab = ac, then b = c.

Assume ab = ac. $\therefore ab - ac = 0_R$ by subtraction. $\therefore a(b-c) = 0_R$ by the distributive property. $\therefore a = 0_R$ or $b - c = 0_R$ because integral domains do not have zero divisors. $\therefore b - c = 0_R$ because $a \neq 0_R$ $\therefore b = c$ by addition

10) Let R be an integral domain with unity and let $a \in R$ be prime. Prove that a is also irreducible. (20 points)

Let R be an integral domain.

Assume $a \in R$ is prime.

Assume a = xy for some $x, y \in R$.

$\therefore a \cdot 1_R = xy$	
$\therefore a xy$	Definition of division
$\therefore a x \text{ or } a y$	Because <i>a</i> is prime.
wlog $a x$	
$\therefore ak = x$ for some $k \in R$	Definition of division.
$\therefore xyk = x$	Plug in $a = xy$ into $ak = x$.
$\therefore yk = 1_R$	Cancellation from the fact that <i>R</i> is an integral domain.
$\therefore y \in R^*$	Definition of unit
$\therefore a$ is irreducible.	

11) Let *R* be a commutative ring with unity. Fix two elements $a, b \in R$. Prove that if a = bt for some $t \in R$, then $\langle a \rangle \subseteq \langle b \rangle$. (20 points)

Assume a = bt for some $t \in R$. Suppose $x \in \langle a \rangle$ $\therefore x = ak$ for some $k \in R$. $\therefore x = (bt)k = b(tk)$ $\therefore x \in \langle b \rangle$ $\langle a \rangle \subseteq \langle b \rangle$