Name \qquad

Part 1: Basic Knowledge

1) Let R be a ring. What does it mean for addition to be closed? (5 points)

If $a, b \in R$, then $a+b \in R$.
2) Let R be a ring and S a subset of R. State one of the subring criterions. (5 points)
S is a ring iff all of the following are satisfied:

1. $S \neq \varnothing$
2. $a, b \in S \Rightarrow a+b \in S$ (Closed under addition)
3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)
4. $a \in S \Rightarrow-a \in S$ (Closed under additive inverses)

Or iff all of the following are satisfied:

1. $S \neq \varnothing$
2. $a, b \in S \Rightarrow a-b \in S$ (Closed under subtraction)
3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)

Or iff all of the following are satisfied:

1. $S \neq \varnothing$
2. $a, b \in S \Rightarrow a+b \in S \quad$ (Closed under addition)
3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)
4. S is finite.
3) Let R be a ring with unity. What is the definition of 1_{R} that makes it so special? (5 points)

Let $r \in R .1_{R} r=r 1_{R}=r$ for all $r \in R$.

Note that we need both directions because we are not given that R is commutative.
4) Let R be a ring and S a subring. What more does it take for S to be an ideal? (5 points)

For all $s \in S$ and $r \in R$, both $s r \in S$ and $r s \in S$.

Name \qquad

Part 2: Basic Skills and Concepts

5) Consider the ring \mathbb{Z}_{24}. Find $\langle 4\rangle+3$, what is it? (5 points)

If we write $\mathbb{Z}_{24}=\{0,1,2,3,4, \cdots, 23\}$, then we get:
$\langle 4\rangle=\{0,4,8,12,16,20\}$
$\langle 4\rangle+3=\{3,7,11,15,19,23\}$
6) Let R be an integral domain with unity. True or false: $\left\langle 2_{R}\right\rangle$ is always a maximal ideal, and why? (5 points) False. Consider a counterexample: \mathbb{R}, because $\left\langle 2_{R}\right\rangle=\mathbb{R}$ and so is not maximal.

Or go the other way, consider $\mathbb{Z}[x]$, in this case $\left\langle 2_{R}\right\rangle$ is not maximal because $\left\langle 2_{R}\right\rangle \subseteq\langle 2, x\rangle$.
7) Place these ideals into the same subring tree on the ring $R=\mathbb{R}[x, y]$. Note that they are not all distinct. (5 points)
a. $\langle 0\rangle$
b. $\langle 1\rangle$
c. $\langle 2\rangle$
d. $\langle x\rangle$
e. $\langle x+1\rangle$
f. $\langle x, x+1\rangle$
g. $\langle y\rangle$
h. $\left\langle y^{2}\right\rangle$
i. $\langle x y\rangle$

8) Let R be a ring with unity. Define $2_{R}:=1_{R}+1_{R}$. In most rings, $2_{R} \neq 1_{R}$. What is the condition required to guarantee that $2_{R} \neq 1_{R}$? (5 points)
$0_{R} \neq 1_{R}$, or equivalently that R is nontrivial.

Part 3: Proofs

Do not use any advanced theorems that would create circular logic.
9) Let R be an integral domain. State and prove what is known as the cancellation law. (20 points)

Let $a, b, c \in R$ such that $a \neq 0$. If $a b=a c$, then $b=c$.

Assume $a b=a c$.
$\therefore a b-a c=0_{R} \quad$ by subtraction.
$\therefore a(b-c)=0_{R} \quad$ by the distributive property.
$\therefore a=0_{R}$ or $b-c=0_{R}$ because integral domains do not have zero divisors.
$\therefore b-c=0_{R} \quad$ because $a \neq 0_{R}$
$\therefore b=c \quad$ by addition
10) Let R be an integral domain with unity and let $a \in R$ be prime. Prove that a is also irreducible. (20 points) Let R be an integral domain.

Assume $a \in R$ is prime.

Assume $a=x y$ for some $x, y \in R$.
$\therefore a \cdot 1_{R}=x y$
$\therefore a \mid x y \quad$ Definition of division
$\therefore a \mid x$ or $a \mid y$
Because a is prime.
wlog $a \mid x$
$\therefore a k=x$ for some $k \in R$
$\therefore x y k=x$
$\therefore y k=1_{R}$
Definition of division.
Plug in $a=x y$ into $a k=x$.
Cancellation from the fact that R is an integral domain.
$\therefore y \in R^{*}$
Definition of unit
$\therefore a$ is irreducible.
11) Let R be a commutative ring with unity. Fix two elements $a, b \in R$. Prove that if $a=b t$ for some $t \in R$, then $\langle a\rangle \subseteq\langle b\rangle$. (20 points)

Assume $a=b t$ for some $t \in R$.
Suppose $x \in\langle a\rangle$
$\therefore x=a k$ for some $k \in R$.
$\therefore x=(b t) k=b(t k)$
$\therefore x \in\langle b\rangle$
$\langle a\rangle \subseteq\langle b\rangle$

