Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)

1) Prove or disprove: $(\mathbb{Z}, *)$ is a group where $a * b:=a+b-1$
2) Find the order of $(20,3)$ in $\mathbb{Z}_{99} \times \mathbb{Z}_{299}$ and justify your answer.
3) Prove that any infinite cyclic group has at most two generators.
4) Prove that $\mathbb{R} \times \mathbb{R}-\{(0,0)\}$ and $\mathbb{C}-\{0\}$ are not isomorphic. Here $\mathbb{R} \times \mathbb{R}$ has its operation defined by the direct product on the multiplicative group $\mathbb{R}-\{0\}$ while \mathbb{C} has its operation defined by standard multiplication.

Codename

\qquad Group Theory, Sheet 2
(Do not put your name on the test; write your name and codename on the code sheet)
5) Let G and H be groups. Denote their operations as \circ and \star respectively. Denote their identities as e_{G} and e_{H} respectively.
Let $\varphi: G \rightarrow H$ be a homomorphism. Define the kernel of φ as $\operatorname{ker}(\varphi):=\left\{g \in G \mid \varphi(g)=e_{H}\right\}$. Assume $\operatorname{ker}(\varphi)=\left\{e_{G}\right\}$. Show that φ is one-to-one.
6) Let $G=\left\{e, g, g^{2}, g^{3}, \ldots, g^{n-1}\right\}$ be a finite cyclic group. Show that $|e|+|g|+\left|g^{2}\right|+\cdots+\left|g^{n}\right|>|G|$.
7) Let $G=\left\{e, g_{1}, g_{2}, g_{3}, \ldots, g_{(n-1)}\right\}$ be a finite group. Show that $|e|+\left|g_{1}\right|+\left|g_{2}\right|+\cdots+\left|g_{n-1}\right|>|G|$.

Codename \qquad Group Theory, Sheet 3
(Do not put your name on the test; write your name and codename on the code sheet)
8) Let G be a group. Assume there is a nonempty set $H \subseteq G$ such that H contains $a^{-1} b$ whenever $a, b \in H$. Show that H is a group.
9) Let G be a group and let H be a subgroup. For every $a \in G$, define $a H a^{-1}:=\left\{a h a^{-1} \mid h \in H\right\}$. Show that $a \mathrm{Ha}^{-1}$ is a subgroup of G.
10) Let G and H be multiplicative groups with an isomorphism φ from G to H. Show that $\psi: G \rightarrow H$ is a homomorphism where $\psi(x):=(\varphi(x))^{2}$
11) Consider the set of matrices $\mathbb{R}^{2 \times 2}$ equipped with the standard matrix multiplication and \mathbb{R} equipped with standard multiplication. We shall define the function $\varphi: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ via the equation below. Prove or disprove that this is a group homomorphism.

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a b-c d
$$

