Codename _____

_ Group Theory, Test 1

(Do not put your name on the test; write your name and codename on the code sheet)

1) Prove or disprove: (\mathbb{Z} ,*) is a group where $a * b \coloneqq a + b - 1$

2) Find the order of (20, 3) in $\mathbb{Z}_{99} \times \mathbb{Z}_{299}$ and justify your answer.

3) Prove that any infinite cyclic group has at most two generators.

4) Prove that $\mathbb{R} \times \mathbb{R} - \{(0,0)\}$ and $\mathbb{C} - \{0\}$ are not isomorphic. Here $\mathbb{R} \times \mathbb{R}$ has its operation defined by the direct product on the multiplicative group $\mathbb{R} - \{0\}$ while \mathbb{C} has its operation defined by standard multiplication.

(Do not put your name on the test; write your name and codename on the code sheet)

5) Let G and H be groups. Denote their operations as \circ and \star respectively. Denote their identities as e_G and e_H respectively.

Let $\varphi: G \to H$ be a homomorphism. Define the <u>kernel</u> of φ as $\ker(\varphi) \coloneqq \{g \in G | \varphi(g) = e_H\}$. Assume $\ker(\varphi) = \{e_G\}$. Show that φ is one-to-one.

6) Let $G = \{e, g, g^2, g^3, ..., g^{n-1}\}$ be a finite cyclic group. Show that $|e| + |g| + |g^2| + \dots + |g^n| > |G|$.

7) Let $G = \{e, g_1, g_2, g_3, \dots, g_{(n-1)}\}$ be a finite group. Show that $|e| + |g_1| + |g_2| + \dots + |g_{n-1}| > |G|$.

Codename

(Do not put your name on the test; write your name and codename on the code sheet)

8) Let G be a group. Assume there is a nonempty set $H \subseteq G$ such that H contains $a^{-1}b$ whenever $a, b \in H$. Show that H is a group.

9) Let G be a group and let H be a subgroup. For every $a \in G$, define $aHa^{-1} \coloneqq \{aha^{-1} | h \in H\}$. Show that aHa^{-1} is a subgroup of G.

10) Let *G* and *H* be multiplicative groups with an isomorphism φ from *G* to *H*. Show that $\psi: G \to H$ is a homomorphism where $\psi(x) \coloneqq (\varphi(x))^2$

11) Consider the set of matrices $\mathbb{R}^{2\times 2}$ equipped with the standard matrix multiplication and \mathbb{R} equipped with standard multiplication. We shall define the function $\varphi \colon \mathbb{R}^{2\times 2} \to \mathbb{R}$ via the equation below. Prove or disprove that this is a group homomorphism.

$$\varphi\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = ab - cd$$