Codename $\qquad$

1) Prove or disprove: $(\mathbb{Z}, *)$ is a group where $a * b:=a+b-1$

In order to show that $(\mathbb{Z}, *)$ is a group, we must show that $(0)$ the operation is defined on all of $\mathbb{Z}$ and is closed on $\mathbb{Z},(1)$ that $*$ is associative, (2) that there is an identity, and (3) that every element has an inverse.

First we note that $*$ is defined in terms of standard addition and subtraction of integers. Thus because addition and subtraction is defined on and closed on all of $\mathbb{Z}$, so $*$ is as well.

To show that $*$ is associative, we will show that $a *(b * c)=(a * b) * c$ for any arbitrary choice of integers $a, b, c$. To this end, we now fix these arbitrary integers $a, b, c \in \mathbb{Z}$ and do some algebra:

$$
\begin{aligned}
& a *(b * c)=a *(b+c-1)=a+(b+c-1)-1=a+b+c-2 \\
& =(a+b-1)+c-1=(a * b)+c-1=(a * b) * c
\end{aligned}
$$

We will next show that $1 \in \mathbb{Z}$ is an identity. Fix an arbitrary integer $x \in \mathbb{Z}$. We now compute $1 * x$ and $x * 1$ and show that both of these come out to $x$ :

$$
\begin{aligned}
& 1 * x=1+x-1=x \\
& x * 1=x+1-1=x
\end{aligned}
$$

We will next show $(\mathbb{Z}, *)$ is closed under inverses. Fix an arbitrary $x \in \mathbb{Z}$. We will show that $x^{-1}=2-x$ :

$$
\begin{aligned}
& x *(2-x)=x+(2-x)-1=x+2-x-1=2-1=1 \\
& (2-x) * x=(2-x)+x-1=2-x+x-1=2-1=1
\end{aligned}
$$

Therefore, because we have proven each of the items (0), (1), (2), (3) that define a group, indeed ( $\mathbb{Z}, *)$ is a group.
2) Find the order of $(20,3)$ in $\mathbb{Z}_{99} \times \mathbb{Z}_{299}$ and justify your answer.

I intended $\mathbb{Z}_{100} \times \mathbb{Z}_{300} \ldots$
The solution to this problem was presented by a student.
3) Prove that any infinite cyclic group has at most two generators.

The solution to this problem was presented by a student.
4) Prove that $\mathbb{R} \times \mathbb{R}-\{(0,0)\}$ and $\mathbb{C}-\{0\}$ are not isomorphic. Here $\mathbb{R} \times \mathbb{R}$ has its operation defined by the direct product on the multiplicative group $\mathbb{R}-\{0\}$ while $\mathbb{C}$ has its operation defined by standard multiplication.

The operation makes no sense... $\mathbb{R} \times \mathbb{R}-\{(0,0)\}$ is not a subset of $(\mathbb{R}-\{0\}) \times(\mathbb{R}-\{0\})$.

The solution to this problem was presented by a student.

## Codename

$\qquad$
(Do not put your name on the test; write your name and codename on the code sheet)
5) Let $G$ and $H$ be groups. Denote their operations as $\circ$ and $\star$ respectively. Denote their identities as $e_{G}$ and $e_{H}$ respectively.
Let $\varphi: G \rightarrow H$ be a homomorphism. Define the kernel of $\varphi$ as $\operatorname{ker}(\varphi):=\left\{g \in G \mid \varphi(g)=e_{H}\right\}$. Assume $\operatorname{ker}(\varphi)=\left\{e_{G}\right\}$. Show that $\varphi$ is one-to-one.

First note that to be one-to-one means that every output comes from at most one input. We express this precisely below:

$$
\text { "If } \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right) \text {, then } x_{1}=x_{2} . "
$$

Assume that $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$. Then because $H$ is a group, $\varphi\left(x_{2}\right)$ has an inverse, namely $\left(\varphi\left(x_{2}\right)\right)^{-1}$. Apply this to both sides of the equation from the right:

$$
\varphi\left(x_{1}\right)\left(\varphi\left(x_{2}\right)\right)^{-1}=\varphi\left(x_{2}\right)\left(\varphi\left(x_{2}\right)\right)^{-1}
$$

Next we simplify this. By construction the right hand side is $e_{H}$. On the left hand side we use properties of homomorphisms to obtain

$$
\varphi\left(x_{1} x_{2}^{-1}\right)=e_{H} .
$$

Now we note that the kernel of $\varphi$ is $\left\{e_{G}\right\}$, and so in fact $x_{1} x_{2}^{-1}=e_{G}$. Hence $x_{1}=x_{2}$. Therefore $\varphi$ is one-to-one.
6) Let $G=\left\{e, g, g^{2}, g^{3}, \ldots, g^{n-1}\right\}$ be a finite cyclic group. Show that $|e|+|g|+\left|g^{2}\right|+\cdots+\left|g^{n}\right|>|G|$. । intended $|e|+|g|+\left|g^{2}\right|+\cdots+\left|g^{n-1}\right|>|G|$.

The solution to this problem was presented by a student.
7) Let $G=\left\{e, g_{1}, g_{2}, g_{3}, \ldots, g_{(n-1)}\right\}$ be a finite group. Show that $|e|+\left|g_{1}\right|+\left|g_{2}\right|+\cdots+\left|g_{n-1}\right|>|G|$. I intended to assume $|e|+\left|g_{1}\right|+\left|g_{2}\right|+\cdots+\left|g_{n-1}\right| \geq|G|$.

The solution to this problem was presented by a student.
$\qquad$
(Do not put your name on the test; write your name and codename on the code sheet)
8) Let $G$ be a group. Assume there is a nonempty set $H \subseteq G$ such that $H$ contains $a^{-1} b$ whenever $a, b \in H$. Show that $H$ is a group.

We will use the subgroup criterion and show that if $x, y \in H$, then also $x y^{-1} \in H$. We will use the subgroup criterion and show that $H$ contains the identity, that it is closed under inverses, and that it is closed under the operation.

First we show that $H$ contains the identity. $H$ is nonempty, so there is some $z \in H$. Hence by applying the given property, $e=z^{-1} z \in H$.

Next we show that $H$ contains inverses. Suppose $z \in H$. Then choose $a=z$ and $b=e$ to get that $z^{-1}=z^{-1} e \in H$.

Lastly we show closure under the operation. Let $x, y \in H$. Choose $a=x^{-1}$ and $b=y$. Then we get

$$
x y=\left(x^{-1}\right)^{-1} y \in H
$$

Therefore $H$ is a subgroup of $G$.
9) Let $G$ be a group and let $H$ be a subgroup. For every $a \in G$, define $a H a^{-1}:=\left\{a h a^{-1} \mid h \in H\right\}$. Show that $a \mathrm{Ha}^{-1}$ is a subgroup of $G$.

We will use the subgroup criterion and show that $a \mathrm{Ha}^{-1}$ is nonempty, closed under multiplication, and closed under inverses.

To see that $a H a^{-1}$ is nonempty, note that $e \in H$. Hence $e=a e a^{-1} \in H$.

To see that $\mathrm{aHa}^{-1}$ is closed under multiplication, take two arbitrary elements $x, y \in H$ and multiply them. Because $x, y \in H$ there are $h_{1}, h_{2}$ such that $x=a h_{1} a^{-1}, y=a h_{2} a^{-1}$ so that we get:

$$
x y=a h_{1} a^{-1} a h_{2} a^{-1}=a h_{1} h_{2} a^{-1} \in H
$$

To see that $\mathrm{aHa}^{-1}$ is closed under inverses, take an arbitrary element $x \in H$ and invert it. Again, we can write $x$ in the proper form using some $h_{3} \in H$ :

$$
x=a h_{3} a^{-1} .
$$

Hence we see that:

$$
x^{-1}=\left(a h_{3} a^{-1}\right)^{-1}=\left(a^{-1}\right)^{-1} h_{3}^{-1} a^{-1}=a h_{3}^{-1} a^{-1} \in H .
$$

Therefore $a \mathrm{Ha}^{-1} \leq G$.
10) Let $G$ and $H$ be multiplicative groups with an isomorphism $\varphi$ from $G$ to $H$. Show that $\psi: G \rightarrow H$ is a homomorphism where $\psi(x):=(\varphi(x))^{2}$

The solution to this problem was presented by a student.
11) Consider the set of matrices $\mathbb{R}^{2 \times 2}$ equipped with the standard matrix multiplication and $\mathbb{R}$ equipped with standard multiplication. We shall define the function $\varphi: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ via the equation below. Prove or disprove that this is a group homomorphism.

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a b-c d
$$

The solution to this problem was presented by a student.

