Codename Group Theory, Test 1
(Do not put your name on the test; write your name and codename on the code sheet)

1) Prove or disprove: (Z,*) is a group wherea*b:=a+b —1

In order to show that (Z,*) is a group, we must show that (0) the operation is defined on all of Z and is
closed on Z, (1) that * is associative, (2) that there is an identity, and (3) that every element has an
inverse.

First we note that * is defined in terms of standard addition and subtraction of integers. Thus because
addition and subtraction is defined on and closed on all of Z, so * is as well.

To show that = is associative, we will show that a * (b * ¢) = (a * b) * ¢ for any arbitrary choice of

integers a, b, c. To this end, we now fix these arbitrary integers a, b, ¢ € Z and do some algebra:
ax(bxc)=ax(b+c—1)=a+b+c—1)—1=a+b+c—-2
=(a+b—-1)+c—1=(a*b)+c—1=(ax*b)*c.

We will next show that 1 € Z is an identity. Fix an arbitrary integer x € Z. We now compute 1 * x and
x * 1 and show that both of these come out to x:

lsx=14+x—-1=x

x*¥xl=x+1-1=nx.

We will next show (Z,*) is closed under inverses. Fix an arbitrary x € Z. We will show that x™ = 2 — x:
x*xQ2-x)=x+Q2-x)—-1=x+2—-x—-1=2-1=1

R-x)*x=Q2Q-x)+x—-1=2—-x+x—-1=2-1=1.

Therefore, because we have proven each of the items (0), (1), (2), (3) that define a group, indeed (Z,*)
is a group.



2) Find the order of (20, 3) in Zgg X Z,99 and justify your answer.
I intended Z1gg X Z3pg---

The solution to this problem was presented by a student.



3) Prove that any infinite cyclic group has at most two generators.

The solution to this problem was presented by a student.

4) Prove that R X R — {(0,0)} and C — {0} are not isomorphic. Here R X R has its operation defined by
the direct product on the multiplicative group R — {0} while C has its operation defined by standard
multiplication.

The operation makes no sense... R X R — {(0,0)} is not a subset of (R — {0}) X (R — {0}).

The solution to this problem was presented by a student.



Codename Group Theory, Sheet 2

(Do not put your name on the test; write your name and codename on the code sheet)

5) Let G and H be groups. Denote their operations as o and * respectively. Denote their identities as e;
and ey respectively.

Let ¢: G > H be a homomorphism. Define the kernel of ¢ as ker(p) = {g € G|p(g) = ey}. Assume
ker(¢p) = {e;}. Show that ¢ is one-to-one.

First note that to be one-to-one means that every output comes from at most one input. We express
this precisely below:

“If p(x1) = @(x,),thenx; = x,.”

Assume that ¢ (x;) = @(x,). Then because H is a group, ¢ (x,) has an inverse, namely ((p(xz))_l.
Apply this to both sides of the equation from the right:

P (0(2)) " = p(x)(9(x)

Next we simplify this. By construction the right hand side is ey. On the left hand side we use properties
of homomorphisms to obtain

(p(xlxz_l) = éy.

Now we note that the kernel of ¢ is {e;}, and so in fact x;x; 1 = e;. Hence x; = x,. Therefore ¢ is one-
to-one.



6) Let G = {e, g, g% g3, ..., g1} be a finite cyclic group. Show that |e| + |g| + |g?%| + --- + |g"| > |G]|.
lintended |e| + |g| + |g?| + --- + |g™ 1| > |G].

The solution to this problem was presented by a student.

7) LetG = {e,gl,gz,g3, ...,g(n_l)] be a finite group. Show that |e| + |g1| + |g2| + -+ + |gn-1| > |G]|.
lintended to assume |e| + |g1| + |g2] + -+ |gn-1] = |G].

The solution to this problem was presented by a student.
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8) Let G be a group. Assume there is a nonempty set H € G such that H contains a~'b whenever
a,b € H. Show that H is a group.

We will use the subgroup criterion and show that H contains the identity, that it is closed under
inverses, and that it is closed under the operation.

First we show that H contains the identity. H is nonempty, so there is some z € H. Hence by applying
the given property,e = z" 'z € H.

Next we show that H contains inverses. Suppose z € H. Then choose a = z and b = e to get that
z7l=z"leeH.

Lastly we show closure under the operation. Let x,y € H. Choose a = x~! and b = y. Then we get
xy = (") ly eH.
Therefore H is a subgroup of G.



9) Let G be a group and let H be a subgroup. For every a € G, define aHa™! := {aha™'|h € H}. Show
that aHa ™! is a subgroup of G.

We will use the subgroup criterion and show that aHa™! is nonempty, closed under multiplication, and
closed under inverses.

To see that aHa ™! is nonempty, note that e € H. Hencee = aea™! € H.

To see that aHa ™!

is closed under multiplication, take two arbitrary elements x, y € H and multiply
them. Because x,y € H there are hy, h, such that x = ahya™1,y = ah,a™? so that we get:

xy = ahya~tah,a ! = ah;h,a € H

To see that aHa ™! is closed under inverses, take an arbitrary element x € H and invert it. Again, we can
write x in the proper form using some h; € H:

x = ahza L.
Hence we see that:

x71 = (ahza )t = (@) thzlat = ahsla™! € H.

Therefore aHa™! < G.



10) Let G and H be multiplicative groups with an isomorphism ¢ from G to H. Show that: G - His a

homomorphism where ¥ (x) = (fp(x))z

The solution to this problem was presented by a student.

11) Consider the set of matrices R?*? equipped with the standard matrix multiplication and R equipped
with standard multiplication. We shall define the function ¢: R?*? — R via the equation below. Prove

or disprove that this is a group homomorphism.

o8 )=

The solution to this problem was presented by a student.



