\qquad

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the following:

- There is no partial credit, you earn points only for what you have mastered.
- Credit is given for correct answers, or nearly correct answers.
(I won't split hairs on minor mistakes)
- There are more problems per part than is required for the maximum score (Balances out no partial credit)
- In each section you cannot earn more points than the maximum score (No extra credit)
- Please write on the blank paper provided. You may use multiple sheets if necessary. Please start each part on a new sheet (as I will be separating them into parts to grade in batches)

Part	Number of questions	Points per question	Maximum Score
1	10	15	59 (Cumulative 59)
2	6	10	20 (Cumulative 79)
3	5	5	10 (Cumulative 89)
4	4	3	11 (Cumulative 100)

Part 1

1) Give an example of a monotone sequence that does not converge.
2) Give an example of a set that has a supremum, but not a maximum.
3) Give an example of a set that does not have a supremum.
4) True or false and why? Every closed and bounded set is compact.
5) What is $|x|$? State the definition.
6) What does it mean for a set S to be sequentially compact? State the definition.
7) Let $\left\{a_{n}\right\}$ be a real sequence. What does it mean for $\left\{a_{n}\right\}$ to converge to a ? State the sequential definition.
8) What does it mean for a set S to be compact? State the definition.
9) What is the definition of the universal quantifier, \forall ? State the definition.
10) What is the infimum? State the definition of $\inf (S)$.

Part 2

11) Assume that $\left\{x_{n}\right\} \rightarrow 5$ and $\left\{y_{n}\right\} \rightarrow 2$. Prove that $\left\{3 x_{n}+2 y_{n}\right\} \rightarrow 19$.
12) Give an example of an open cover of \mathbb{R} that does not have a finite subcover.
13) Let $b>0$ and assume $|x-b|<\frac{4}{5}|b|$. Prove that $x>\frac{b}{5}$
14) Prove that Prove that $\left\{\frac{1}{(n+2)^{3}}+1\right\} \rightarrow 1$
15) Prove that the interval $(2,5]$ is not compact.
16) Prove that the interval $[1,7]$ is sequentially compact.

Part 3

17) Prove that Prove that $\left\{\frac{1}{(n+2)^{3}}+1\right\} \rightarrow 1$ using the ε definition of convergence.
18) Prove that $\sqrt{2}$ is irrational
19) Given a real number a, define $S:=\{x \in \mathbb{Q}: x<a\}$. Prove that $a=\sup (S)$
20) Let $\left\{a_{n}\right\}$ be a sequence that converges to a and $\left\{b_{n}\right\}$ a sequence. Assume that there is an index N such that $a_{n}=b_{n}$ for all $n \geq N$. Prove that $\left\{b_{n}\right\} \rightarrow a$.
21) Prove that the set $[5, \infty)$ is closed.

Part 4

22) Let $\left\{a_{n}\right\}$ be a sequence that converges to a and $\left\{b_{n}\right\}$ a sequence. Assume that there is an index N such that $a_{n}=b_{n}$ for all $n \geq N$. Use the definition of convergence to prove that $\left\{b_{n}\right\}$ converges.
23) Assume $\left\{a_{n}\right\}$ is monotone. Prove that $\left\{a_{n}\right\}$ converges if and only if $\left\{a_{n}^{2}\right\}$ converges.
24) Assume that $|a|<1$ and $\left\{a_{n}\right\} \rightarrow a$. Prove that $\left\{a_{n}^{n}\right\} \rightarrow 0$
25) Let A and B be compact sets. Prove that $A \cup B$ is compact.
