
Name _________________________________________________________________ Test 1,  Fall 2020 

 

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the 

following: 

 There is no partial credit, you earn points only for what you have mastered. 

 Credit is given for correct answers, or nearly correct answers. 
(I won’t split hairs on minor mistakes) 

 There are more problems per part than is required for the maximum score  
(Balances out no partial credit) 

 In each section you cannot earn more points than the maximum score  
(No extra credit) 

 Please write on the blank paper provided. You may use multiple sheets if necessary. Please start 

each part on a new sheet (as I will be separating them into parts to grade in batches) 

 

Part Number of questions Points per question Maximum Score 

1 10 15 59 (Cumulative 59) 

2 6 10 20 (Cumulative 79) 

3 5 5 10 (Cumulative 89) 

4 4 3 11 (Cumulative 100) 

 

Part 1 

 

1) Give an example of a monotone sequence that does not converge. 

 

We know that any monotone and bounded sequence converges (in fact to its sup). So you’ll need an 

unbounded sequence, such as {𝑛}𝑛=1
∞  or {3𝑛2 + 2}𝑛=1

∞ . 

 

2) Give an example of a set that has a supremum, but not a maximum. 

 

If the set is unbounded above, it would not have a sup (well, ∞). So choose a set that is bounded, but yet 

still has no maximum. Perhaps, say, (0,1).  

 

3) Give an example of a set that does not have a supremum. 

 

We know any bounded set has a supremum, so you’ll need to choose something unbounded above. Say, 

[0, ∞) or just all of ℝ.  

 

4) True or false and why? Every closed and bounded set is compact. 

 

True, look at theorem T41. 

  



5) What is |𝑥|? State the definition. 

 

|𝑥| = { 
𝑥, if 𝑥 ≥ 0

−𝑥, if 𝑥 < 0
 

 

6) What does it mean for a set 𝑆 to be sequentially compact? State the definition. 

 

𝑆 is sequentially compact if every sequence in 𝑆 has a convergent subsequence. (it must converge in 𝑆). 

 

7) Let {𝑎𝑛} be a real sequence. What does it mean for {𝑎𝑛} to converge to 𝑎? State the sequential 

definition. 

 

For each tolerance 𝜀, beyond some point 𝑁, 𝑎𝑛 is within 𝜀 of 𝑎. That is: 

∀𝜀>0∃𝑁∈ℕ∀𝑛≥𝑁(|𝑎𝑛 − 𝑎| < 𝜀) 

 

8) What does it mean for a set 𝑆 to be compact? State the definition. 

 

A set 𝑆 is compact if every open cover of 𝑆 has a finite subcover. 

 

9) What is the definition of the universal quantifier, ∀? State the definition.  

 

Let 𝑆(𝑥) be a statement, given any value of 𝑥. The universal quantifier ∀ quantifies the statement by 

making a statement is that true if and only if 𝑆(𝑥) is true for every 𝑥: 

∀𝑥(𝑆(𝑥)) is true if and only if 𝑆(𝑥) is true for each 𝑥 

 

10)  What is the infimum? State the definition of inf(𝑆).  

 

inf(𝑆) is the greatest lower bound of 𝑆.   



Part 2  

 

11) Assume that {𝑥𝑛} → 5 and {𝑦𝑛} → 2. Prove that {3𝑥𝑛 + 2𝑦𝑛} → 19. 

 

{3𝑥𝑛} → 3 ⋅ 5 = 15 by lemma L24. 

{2𝑦𝑛} → 2 ⋅ 2 = 4 by lemma L24 

{3𝑥𝑛 + 2𝑦𝑛} → 15 + 4 = 19 by theorem T23 

 

12) Give an example of an open cover of ℝ that does not have a finite subcover. 

 

{… , (−1,1), (0,2), (1,3), (2,4), … } 

 

 

13) Let 𝑏 > 0 and assume |𝑥 − 𝑏| <
4

5
|𝑏|. Prove that 𝑥 >

𝑏

5
 

 

Choosing 𝑑 =
4

5
|𝑏| in theorem T14 we get: 

−
4

5
|𝑏| ≤ 𝑥 − 𝑏 ≤

4

5
|𝑏| 

 

Just consider the left half, −
4

5
|𝑏| ≤ 𝑥 − 𝑏, and add 𝑏 to both sides to get: 

|𝑏|

5
≤ 𝑥 

 

𝑏 > 0, so this can be written as: 

𝑏

5
≤ 𝑥 

 

Okay technically we wanted strict inequality. Because the original inequality was strict, it turns out it will 

follow all the way through to get 
𝑏

5
< 𝑥.  

 

14) Prove that Prove that {
1

(𝑛+2)3 + 1} → 1 

 

{
1

𝑛
} → 0 by T9 

{
1

𝑛+2
}

𝑛=1

∞
= {

1

𝑛
}

𝑛=3

∞
, so {

1

𝑛+2
} → 0 as well.  

{
1

(𝑛+2)3} = {(
1

𝑛+2
)

3
} → 03 = 0 by theorem T30.  

{1} → 1, obviously. 

{
1

(𝑛+2)3 + 1} → 0 + 1 = 1 by theorem T23.  

 



15) Prove that the interval (2,5] is not compact. 

 

The following open interval cover does not have a finite subcover: 

{(3,8), (2.1,4), (2.01,4), (2.001,4), … } 

 

16) Prove that the interval [1,7] is sequentially compact.  

 

It is closed and bounded, so by T41 it is sequentially compact. 

 

Part 3 

 

17) Prove that Prove that {
1

(𝑛+2)3 + 1} → 1 using the 𝜀 definition of convergence. 

 

Let 𝜀 > 0 and choose 𝑁 = ⌈√
1

𝜀

3
⌉. Then we obtain for all 𝑛 ≥ 𝑁: 

|
1

(𝑛 + 2)3
+ 1 − 1| = |

1

(𝑛 + 2)3| =
1

(𝑛 + 2)3
<

1

𝑛3
≤

1

𝑁3
=

1

(⌈√1
𝜀

3

⌉)

3 ≤
1

(√1
𝜀

3

)

3 =
1

 
1
𝜀 

= 𝜀 

Thus {
1

(𝑛+2)3 + 1} → 1 

 

18) Prove that √2 is irrational 

 

Assume √2 ∈ ℚ. Then we can write √2 =
𝑝

𝑞
 and wlog assume gcd(𝑝, 𝑞) = 1. 

 

∴ 𝑞√2 = 𝑝  

∴ 2𝑞2 = 𝑝2  

∴ 𝑝2 is even 

∴ 𝑝 is even 

Write 𝑝 = 2𝑘 for some 𝑘 ∈ ℤ 

∴ 2𝑞2 = (2𝑘)2 = 4𝑘2  

∴ 𝑞2 = 2𝑘2  

∴ 𝑞2 is even 

∴ 𝑞 is even 

This is a contradiction with the fact that gcd(𝑝, 𝑞) = 1, so √2 ∉ ℚ. 

 

19) Given a real number 𝑎, define 𝑆 ≔ {𝑥 ∈ ℚ: 𝑥 < 𝑎}. Prove that 𝑎 = sup(𝑆) 

 

By the of definition 𝑆, 𝑎 an upper bound. Suppose that 𝑏 is a smaller upper bound. That is, 𝑏 < 𝑎 and 

𝑥 < 𝑏 for all 𝑥 ∈ 𝑆. However, (𝑏, 𝑎) contains a rational number, say 𝑐, by theorem T13. This is a 

contradiction because 𝑐 ∈ ℚ and 𝑐 < 𝑎. Hence 𝑏 was not an upper bound for 𝑆. Therefore 𝑎 = sup(𝑆).   



 

20) Let {𝑎𝑛} be a sequence that converges to 𝑎 and {𝑏𝑛} a sequence. Assume that there is an index 𝑁 

such that 𝑎𝑛 = 𝑏𝑛 for all 𝑛 ≥ 𝑁. Prove that {𝑏𝑛} → 𝑎.  

 

Consider the sequence {𝑏𝑛 − 𝑎𝑛}. Choosing 𝐶 = 0 and the sequence {0}, lemma L21 tells us that 

{𝑏𝑛 − 𝑎𝑛} → 0 because |𝑏𝑛 − 𝑎𝑛| = |𝑎𝑛 − 𝑎𝑛| = 0 ≤ 0 for all 𝑛 ≥ 𝑁. Then apply T23 to {𝑏𝑛 − 𝑎𝑛} and 

{𝑎𝑛} to obtain: 

{𝑏𝑛} = {𝑏𝑛 − 𝑎𝑛 + 𝑎𝑛} → 0 + 𝑎 = 𝑎 

 

21) Prove that the set [5, ∞) is closed. 

 

Let {𝑥𝑛} be a sequence in [5, ∞) and assume that {𝑥𝑛} → 𝑥 ∈ ℝ. Assume for the purpose of later 

contradiction that 𝑥 < 5. Choose 𝜀 =
5−𝑥

2
. Then by convergence there is some 𝑁 ∈ ℕ such that  

𝑥𝑛 ∈ (𝑥 −
5 − 𝑥

2
, 𝑥 +

5 − 𝑥

2
) 

for all 𝑛 ≥ 𝑁. Note that 𝑥 +
5−𝑥

2
< 5 (why?), so 𝑥𝑛 ∉ [5, ∞) which is a contradiction. Hence 𝑥 ≥ 5, so 

[5, ∞) is closed.  

 

Part 4 

 

22) Let {𝑎𝑛} be a sequence that converges to 𝑎 and {𝑏𝑛} a sequence. Assume that there is an index 𝑁 

such that 𝑎𝑛 = 𝑏𝑛 for all 𝑛 ≥ 𝑁. Use the definition of convergence to prove that {𝑏𝑛} converges.  

 

Let 𝜀 > 0. We know that because {𝑎𝑛} → 𝑎, there is some 𝑁2 ∈ ℕ such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁2. 

If we consider 𝑁3 = max(𝑁, 𝑁2), then we see that |𝑏𝑛 − 𝑎| = |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁3. Thus we 

have {𝑏𝑛} → 𝑎.   

 

 

23) Assume {𝑎𝑛} is monotone. Prove that {𝑎𝑛} converges if and only if {𝑎𝑛
2} converges. 

 

The forward direction is a trivial consequence of T30 taking 𝑓(𝑥) = 𝑥2. The backward direction takes 

more work.  

 

Assume {𝑎𝑛
2} converges. Because {𝑎𝑛} is monotone, {𝑎𝑛

2} is also monotone. Thus {𝑎𝑛
2} is bounded by 

theorem T35. Hence {𝑎𝑛} is also bounded. Then again by T35, {𝑎𝑛} is converges.  

 

24) Assume that |𝑎| < 1 and {𝑎𝑛} → 𝑎. Prove that {𝑎𝑛
𝑛} → 0 

 

Let us create a sequence of sequences. {{𝑎𝑛
𝑚}𝑛=1

∞ }𝑚=1
∞ . For each fixed 𝑚, T30 tells us that  

{𝑎𝑛
𝑚}𝑛=1

∞ → 𝑎𝑚. However, note that {𝑎𝑚} → 0. Hence {𝑎𝑛
𝑛}𝑛=0

∞ → 0.  

  



 

25) Let 𝐴 and 𝐵 be compact sets. Prove that 𝐴 ∪ 𝐵 is compact. 

 

By T41 both 𝐴 and 𝐵 are closed and bounded. Because they are both bounded, 𝐴 ∪ 𝐵 is obviously also 

bounded (By the larger of the two bounds). For closedness, let {𝑎𝑛} be a sequence in 𝐴 ∪ 𝐵 and assume 

{𝑎𝑛} → 𝑎 ∈ ℝ. Either {𝑎𝑛} has infinitely many terms in 𝐴, or it has infinitely many terms in 𝐵. Assume 

wlog that it has infinitely many terms in 𝐴, and consider the subsequence {𝑎𝑛𝑘
} of those terms just in 𝐴. 

Because it is a subsequence of {𝑎𝑛}, it converges to the same thing: {𝑎𝑛𝑘
} → 𝑎. However, because 𝐴 is 

closed and {𝑎𝑛𝑘} is in 𝐴, the limit, 𝑎, is in 𝐴. That is, 𝑎 ∈ 𝐴. Therefore 𝐴 ∪ 𝐵 is closed, and together with 

boundedness we see that 𝐴 ∪ 𝐵 is compact. 

 

Or a direct proof: 

Let {𝐼𝑛} be an open interval cover of 𝐴 ∪ 𝐵. Then it is simultaneously an open interval covers for 𝐴 and 

for 𝐵. Hence there are finite subcovers {𝐼𝑛}𝑛=1
𝑚1  and {𝐼𝑛}𝑛=1

𝑚2  that cover 𝐴 and 𝐵 respectively. Hence if we 

take the union of these two finite sets, we get a finite open subcover of 𝐴 ∪ 𝐵: 

{𝐼𝑛}𝑛=1
max(𝑚1,𝑚2)

 


