\qquad

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the following:

- There is no partial credit, you earn points only for what you have mastered.
- Credit is given for correct answers, or nearly correct answers.
(I won't split hairs on minor mistakes)
- There are more problems per part than is required for the maximum score (Balances out no partial credit)
- In each section you cannot earn more points than the maximum score (No extra credit)
- Please write on the blank paper provided. You may use multiple sheets if necessary. Please start each part on a new sheet (as I will be separating them into parts to grade in batches)

Part	Number of questions	Points per question	Maximum Score
1	10	15	59 (Cumulative 59)
2	6	10	20 (Cumulative 79)
3	5	5	10 (Cumulative 89)
4	4	3	11 (Cumulative 100)

Part 1

1) Give an example of a monotone sequence that does not converge.

We know that any monotone and bounded sequence converges (in fact to its sup). So you'll need an unbounded sequence, such as $\{n\}_{n=1}^{\infty}$ or $\left\{3 n^{2}+2\right\}_{n=1}^{\infty}$.
2) Give an example of a set that has a supremum, but not a maximum.

If the set is unbounded above, it would not have a sup (well, ∞). So choose a set that is bounded, but yet still has no maximum. Perhaps, say, $(0,1)$.
3) Give an example of a set that does not have a supremum.

We know any bounded set has a supremum, so you'll need to choose something unbounded above. Say, $[0, \infty)$ or just all of \mathbb{R}.
4) True or false and why? Every closed and bounded set is compact.

True, look at theorem T41.
5) What is $|x|$? State the definition.
$|x|=\left\{\begin{array}{r}x, \text { if } x \geq 0 \\ -x, \text { if } x<0\end{array}\right.$
6) What does it mean for a set S to be sequentially compact? State the definition.
S is sequentially compact if every sequence in S has a convergent subsequence. (it must converge in S).
7) Let $\left\{a_{n}\right\}$ be a real sequence. What does it mean for $\left\{a_{n}\right\}$ to converge to a ? State the sequential definition.

For each tolerance ε, beyond some point N, a_{n} is within ε of a. That is:

$$
\forall_{\varepsilon>0} \exists_{N \in \mathbb{N}} \forall_{n \geq N}\left(\left|a_{n}-a\right|<\varepsilon\right)
$$

8) What does it mean for a set S to be compact? State the definition.

A set S is compact if every open cover of S has a finite subcover.
9) What is the definition of the universal quantifier, \forall ? State the definition.

Let $S(x)$ be a statement, given any value of x. The universal quantifier \forall quantifies the statement by making a statement is that true if and only if $S(x)$ is true for every x :

$$
\forall_{x}(S(x)) \text { is true if and only if } S(x) \text { is true for each } x
$$

10) What is the infimum? State the definition of $\inf (S)$.
$\inf (S)$ is the greatest lower bound of S.

Part 2

11) Assume that $\left\{x_{n}\right\} \rightarrow 5$ and $\left\{y_{n}\right\} \rightarrow 2$. Prove that $\left\{3 x_{n}+2 y_{n}\right\} \rightarrow 19$.
$\left\{3 x_{n}\right\} \rightarrow 3 \cdot 5=15$ by lemma L24.
$\left\{2 y_{n}\right\} \rightarrow 2 \cdot 2=4$ by lemma L24
$\left\{3 x_{n}+2 y_{n}\right\} \rightarrow 15+4=19$ by theorem T23
12) Give an example of an open cover of \mathbb{R} that does not have a finite subcover.
$\{\ldots,(-1,1),(0,2),(1,3),(2,4), \ldots\}$
13) Let $b>0$ and assume $|x-b|<\frac{4}{5}|b|$. Prove that $x>\frac{b}{5}$

Choosing $d=\frac{4}{5}|b|$ in theorem T14 we get:

$$
-\frac{4}{5}|b| \leq x-b \leq \frac{4}{5}|b|
$$

Just consider the left half, $-\frac{4}{5}|b| \leq x-b$, and add b to both sides to get:

$$
\frac{|b|}{5} \leq x
$$

$b>0$, so this can be written as:

$$
\frac{b}{5} \leq x
$$

Okay technically we wanted strict inequality. Because the original inequality was strict, it turns out it will follow all the way through to get $\frac{b}{5}<x$.
14) Prove that Prove that $\left\{\frac{1}{(n+2)^{3}}+1\right\} \rightarrow 1$
$\left\{\frac{1}{n}\right\} \rightarrow 0$ by T9
$\left\{\frac{1}{n+2}\right\}_{n=1}^{\infty}=\left\{\frac{1}{n}\right\}_{n=3}^{\infty}$, so $\left\{\frac{1}{n+2}\right\} \rightarrow 0$ as well.
$\left\{\frac{1}{(n+2)^{3}}\right\}=\left\{\left(\frac{1}{n+2}\right)^{3}\right\} \rightarrow 0^{3}=0$ by theorem T30.
$\{1\} \rightarrow 1$, obviously.
$\left\{\frac{1}{(n+2)^{3}}+1\right\} \rightarrow 0+1=1$ by theorem T23.
15) Prove that the interval $(2,5]$ is not compact.

The following open interval cover does not have a finite subcover:

$$
\{(3,8),(2.1,4),(2.01,4),(2.001,4), \ldots\}
$$

16) Prove that the interval [1,7] is sequentially compact.

It is closed and bounded, so by T41 it is sequentially compact.

Part 3

17) Prove that Prove that $\left\{\frac{1}{(n+2)^{3}}+1\right\} \rightarrow 1$ using the ε definition of convergence.

Let $\varepsilon>0$ and choose $N=\left\lceil\sqrt[3]{\frac{1}{\varepsilon}}\right\rceil$. Then we obtain for all $n \geq N$:

$$
\left|\frac{1}{(n+2)^{3}}+1-1\right|=\left|\frac{1}{(n+2)^{3}}\right|=\frac{1}{(n+2)^{3}}<\frac{1}{n^{3}} \leq \frac{1}{N^{3}}=\frac{1}{\left(\left|\sqrt[3]{\frac{1}{\varepsilon}}\right|\right)^{3}} \leq \frac{1}{\left(\sqrt[3]{\frac{1}{\varepsilon}}\right)^{3}}=\frac{1}{\frac{1}{\varepsilon}}=\varepsilon
$$

Thus $\left\{\frac{1}{(n+2)^{3}}+1\right\} \rightarrow 1$
18) Prove that $\sqrt{2}$ is irrational

Assume $\sqrt{2} \in \mathbb{Q}$. Then we can write $\sqrt{2}=\frac{p}{q}$ and wlog assume $\operatorname{gcd}(p, q)=1$.
$\therefore q \sqrt{2}=p$
$\therefore 2 q^{2}=p^{2}$
$\therefore p^{2}$ is even
$\therefore p$ is even
Write $p=2 k$ for some $k \in \mathbb{Z}$
$\therefore 2 q^{2}=(2 k)^{2}=4 k^{2}$
$\therefore q^{2}=2 k^{2}$
$\therefore q^{2}$ is even
$\therefore q$ is even
This is a contradiction with the fact that $\operatorname{gcd}(p, q)=1$, so $\sqrt{2} \notin \mathbb{Q}$.
19) Given a real number a, define $S:=\{x \in \mathbb{Q}: x<a\}$. Prove that $a=\sup (S)$

By the of definition S, a an upper bound. Suppose that b is a smaller upper bound. That is, $b<a$ and $x<b$ for all $x \in S$. However, (b, a) contains a rational number, say c, by theorem T13. This is a contradiction because $c \in \mathbb{Q}$ and $c<a$. Hence b was not an upper bound for S. Therefore $a=\sup (S)$.
20) Let $\left\{a_{n}\right\}$ be a sequence that converges to a and $\left\{b_{n}\right\}$ a sequence. Assume that there is an index N such that $a_{n}=b_{n}$ for all $n \geq N$. Prove that $\left\{b_{n}\right\} \rightarrow a$.

Consider the sequence $\left\{b_{n}-a_{n}\right\}$. Choosing $C=0$ and the sequence $\{0\}$, lemma L 21 tells us that $\left\{b_{n}-a_{n}\right\} \rightarrow 0$ because $\left|b_{n}-a_{n}\right|=\left|a_{n}-a_{n}\right|=0 \leq 0$ for all $n \geq N$. Then apply T23 to $\left\{b_{n}-a_{n}\right\}$ and $\left\{a_{n}\right\}$ to obtain:

$$
\left\{b_{n}\right\}=\left\{b_{n}-a_{n}+a_{n}\right\} \rightarrow 0+a=a
$$

21) Prove that the set $[5, \infty)$ is closed.

Let $\left\{x_{n}\right\}$ be a sequence in $[5, \infty)$ and assume that $\left\{x_{n}\right\} \rightarrow x \in \mathbb{R}$. Assume for the purpose of later contradiction that $x<5$. Choose $\varepsilon=\frac{5-x}{2}$. Then by convergence there is some $N \in \mathbb{N}$ such that

$$
x_{n} \in\left(x-\frac{5-x}{2}, x+\frac{5-x}{2}\right)
$$

for all $n \geq N$. Note that $x+\frac{5-x}{2}<5$ (why?), so $x_{n} \notin[5, \infty)$ which is a contradiction. Hence $x \geq 5$, so $[5, \infty)$ is closed.

Part 4

22) Let $\left\{a_{n}\right\}$ be a sequence that converges to a and $\left\{b_{n}\right\}$ a sequence. Assume that there is an index N such that $a_{n}=b_{n}$ for all $n \geq N$. Use the definition of convergence to prove that $\left\{b_{n}\right\}$ converges.

Let $\varepsilon>0$. We know that because $\left\{a_{n}\right\} \rightarrow a$, there is some $N_{2} \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\varepsilon$ for all $n \geq N_{2}$. If we consider $N_{3}=\max \left(N, N_{2}\right)$, then we see that $\left|b_{n}-a\right|=\left|a_{n}-a\right|<\varepsilon$ for all $n \geq N_{3}$. Thus we have $\left\{b_{n}\right\} \rightarrow a$.
23) Assume $\left\{a_{n}\right\}$ is monotone. Prove that $\left\{a_{n}\right\}$ converges if and only if $\left\{a_{n}^{2}\right\}$ converges.

The forward direction is a trivial consequence of T30 taking $f(x)=x^{2}$. The backward direction takes more work.

Assume $\left\{a_{n}^{2}\right\}$ converges. Because $\left\{a_{n}\right\}$ is monotone, $\left\{a_{n}^{2}\right\}$ is also monotone. Thus $\left\{a_{n}^{2}\right\}$ is bounded by theorem T35. Hence $\left\{a_{n}\right\}$ is also bounded. Then again by T35, $\left\{a_{n}\right\}$ is converges.
24) Assume that $|a|<1$ and $\left\{a_{n}\right\} \rightarrow a$. Prove that $\left\{a_{n}^{n}\right\} \rightarrow 0$

Let us create a sequence of sequences. $\left\{\left\{a_{n}^{m}\right\}_{n=1}^{\infty}\right\}_{m=1}^{\infty}$. For each fixed m, T30 tells us that $\left\{a_{n}^{m}\right\}_{n=1}^{\infty} \rightarrow a^{m}$. However, note that $\left\{a^{m}\right\} \rightarrow 0$. Hence $\left\{a_{n}^{n}\right\}_{n=0}^{\infty} \rightarrow 0$.

25) Let A and B be compact sets. Prove that $A \cup B$ is compact.

By T41 both A and B are closed and bounded. Because they are both bounded, $A \cup B$ is obviously also bounded (By the larger of the two bounds). For closedness, let $\left\{a_{n}\right\}$ be a sequence in $A \cup B$ and assume $\left\{a_{n}\right\} \rightarrow a \in \mathbb{R}$. Either $\left\{a_{n}\right\}$ has infinitely many terms in A, or it has infinitely many terms in B. Assume wlog that it has infinitely many terms in A, and consider the subsequence $\left\{a_{n_{k}}\right\}$ of those terms just in A. Because it is a subsequence of $\left\{a_{n}\right\}$, it converges to the same thing: $\left\{a_{n_{k}}\right\} \rightarrow a$. However, because A is closed and $\left\{a_{n_{k}}\right\}$ is in A, the limit, a, is in A. That is, $a \in A$. Therefore $A \cup B$ is closed, and together with boundedness we see that $A \cup B$ is compact.

Or a direct proof:
Let $\left\{I_{n}\right\}$ be an open interval cover of $A \cup B$. Then it is simultaneously an open interval covers for A and for B. Hence there are finite subcovers $\left\{I_{n}\right\}_{n=1}^{m_{1}}$ and $\left\{I_{n}\right\}_{n=1}^{m_{2}}$ that cover A and B respectively. Hence if we take the union of these two finite sets, we get a finite open subcover of $A \cup B$:

$$
\left\{I_{n}\right\}_{n=1}^{\max \left(m_{1}, m_{2}\right)}
$$

