
Name _________________________________________________________________ Test 1,  Fall 2020 

 

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the 

following: 

 There is no partial credit, you earn points only for what you have mastered. 

 Credit is given for correct answers, or nearly correct answers. 
(I won’t split hairs on minor mistakes) 

 There are more problems per part than is required for the maximum score  
(Balances out no partial credit) 

 In each section you cannot earn more points than the maximum score  
(No extra credit) 

 Please write on the blank paper provided. You may use multiple sheets if necessary. Please start 

each part on a new sheet (as I will be separating them into parts to grade in batches) 

 

Part Number of questions Points per question Maximum Score 

1 10 15 59 (Cumulative 59) 

2 6 10 20 (Cumulative 79) 

3 5 5 10 (Cumulative 89) 

4 4 3 11 (Cumulative 100) 

 

Part 1 

 

1) Give an example of a monotone sequence that does not converge. 

 

We know that any monotone and bounded sequence converges (in fact to its sup). So you’ll need an 

unbounded sequence, such as {𝑛}𝑛=1
∞  or {3𝑛2 + 2}𝑛=1

∞ . 

 

2) Give an example of a set that has a supremum, but not a maximum. 

 

If the set is unbounded above, it would not have a sup (well, ∞). So choose a set that is bounded, but yet 

still has no maximum. Perhaps, say, (0,1).  

 

3) Give an example of a set that does not have a supremum. 

 

We know any bounded set has a supremum, so you’ll need to choose something unbounded above. Say, 

[0, ∞) or just all of ℝ.  

 

4) True or false and why? Every closed and bounded set is compact. 

 

True, look at theorem T41. 

  



5) What is |𝑥|? State the definition. 

 

|𝑥| = { 
𝑥, if 𝑥 ≥ 0

−𝑥, if 𝑥 < 0
 

 

6) What does it mean for a set 𝑆 to be sequentially compact? State the definition. 

 

𝑆 is sequentially compact if every sequence in 𝑆 has a convergent subsequence. (it must converge in 𝑆). 

 

7) Let {𝑎𝑛} be a real sequence. What does it mean for {𝑎𝑛} to converge to 𝑎? State the sequential 

definition. 

 

For each tolerance 𝜀, beyond some point 𝑁, 𝑎𝑛 is within 𝜀 of 𝑎. That is: 

∀𝜀>0∃𝑁∈ℕ∀𝑛≥𝑁(|𝑎𝑛 − 𝑎| < 𝜀) 

 

8) What does it mean for a set 𝑆 to be compact? State the definition. 

 

A set 𝑆 is compact if every open cover of 𝑆 has a finite subcover. 

 

9) What is the definition of the universal quantifier, ∀? State the definition.  

 

Let 𝑆(𝑥) be a statement, given any value of 𝑥. The universal quantifier ∀ quantifies the statement by 

making a statement is that true if and only if 𝑆(𝑥) is true for every 𝑥: 

∀𝑥(𝑆(𝑥)) is true if and only if 𝑆(𝑥) is true for each 𝑥 

 

10)  What is the infimum? State the definition of inf(𝑆).  

 

inf(𝑆) is the greatest lower bound of 𝑆.   



Part 2  

 

11) Assume that {𝑥𝑛} → 5 and {𝑦𝑛} → 2. Prove that {3𝑥𝑛 + 2𝑦𝑛} → 19. 

 

{3𝑥𝑛} → 3 ⋅ 5 = 15 by lemma L24. 

{2𝑦𝑛} → 2 ⋅ 2 = 4 by lemma L24 

{3𝑥𝑛 + 2𝑦𝑛} → 15 + 4 = 19 by theorem T23 

 

12) Give an example of an open cover of ℝ that does not have a finite subcover. 

 

{… , (−1,1), (0,2), (1,3), (2,4), … } 

 

 

13) Let 𝑏 > 0 and assume |𝑥 − 𝑏| <
4

5
|𝑏|. Prove that 𝑥 >

𝑏

5
 

 

Choosing 𝑑 =
4

5
|𝑏| in theorem T14 we get: 

−
4

5
|𝑏| ≤ 𝑥 − 𝑏 ≤

4

5
|𝑏| 

 

Just consider the left half, −
4

5
|𝑏| ≤ 𝑥 − 𝑏, and add 𝑏 to both sides to get: 

|𝑏|

5
≤ 𝑥 

 

𝑏 > 0, so this can be written as: 

𝑏

5
≤ 𝑥 

 

Okay technically we wanted strict inequality. Because the original inequality was strict, it turns out it will 

follow all the way through to get 
𝑏

5
< 𝑥.  

 

14) Prove that Prove that {
1

(𝑛+2)3 + 1} → 1 

 

{
1

𝑛
} → 0 by T9 

{
1

𝑛+2
}

𝑛=1

∞
= {

1

𝑛
}

𝑛=3

∞
, so {

1

𝑛+2
} → 0 as well.  

{
1

(𝑛+2)3} = {(
1

𝑛+2
)

3
} → 03 = 0 by theorem T30.  

{1} → 1, obviously. 

{
1

(𝑛+2)3 + 1} → 0 + 1 = 1 by theorem T23.  

 



15) Prove that the interval (2,5] is not compact. 

 

The following open interval cover does not have a finite subcover: 

{(3,8), (2.1,4), (2.01,4), (2.001,4), … } 

 

16) Prove that the interval [1,7] is sequentially compact.  

 

It is closed and bounded, so by T41 it is sequentially compact. 

 

Part 3 

 

17) Prove that Prove that {
1

(𝑛+2)3 + 1} → 1 using the 𝜀 definition of convergence. 

 

Let 𝜀 > 0 and choose 𝑁 = ⌈√
1

𝜀

3
⌉. Then we obtain for all 𝑛 ≥ 𝑁: 

|
1

(𝑛 + 2)3
+ 1 − 1| = |

1

(𝑛 + 2)3| =
1

(𝑛 + 2)3
<

1

𝑛3
≤

1

𝑁3
=

1

(⌈√1
𝜀

3

⌉)

3 ≤
1

(√1
𝜀

3

)

3 =
1

 
1
𝜀 

= 𝜀 

Thus {
1

(𝑛+2)3 + 1} → 1 

 

18) Prove that √2 is irrational 

 

Assume √2 ∈ ℚ. Then we can write √2 =
𝑝

𝑞
 and wlog assume gcd(𝑝, 𝑞) = 1. 

 

∴ 𝑞√2 = 𝑝  

∴ 2𝑞2 = 𝑝2  

∴ 𝑝2 is even 

∴ 𝑝 is even 

Write 𝑝 = 2𝑘 for some 𝑘 ∈ ℤ 

∴ 2𝑞2 = (2𝑘)2 = 4𝑘2  

∴ 𝑞2 = 2𝑘2  

∴ 𝑞2 is even 

∴ 𝑞 is even 

This is a contradiction with the fact that gcd(𝑝, 𝑞) = 1, so √2 ∉ ℚ. 

 

19) Given a real number 𝑎, define 𝑆 ≔ {𝑥 ∈ ℚ: 𝑥 < 𝑎}. Prove that 𝑎 = sup(𝑆) 

 

By the of definition 𝑆, 𝑎 an upper bound. Suppose that 𝑏 is a smaller upper bound. That is, 𝑏 < 𝑎 and 

𝑥 < 𝑏 for all 𝑥 ∈ 𝑆. However, (𝑏, 𝑎) contains a rational number, say 𝑐, by theorem T13. This is a 

contradiction because 𝑐 ∈ ℚ and 𝑐 < 𝑎. Hence 𝑏 was not an upper bound for 𝑆. Therefore 𝑎 = sup(𝑆).   



 

20) Let {𝑎𝑛} be a sequence that converges to 𝑎 and {𝑏𝑛} a sequence. Assume that there is an index 𝑁 

such that 𝑎𝑛 = 𝑏𝑛 for all 𝑛 ≥ 𝑁. Prove that {𝑏𝑛} → 𝑎.  

 

Consider the sequence {𝑏𝑛 − 𝑎𝑛}. Choosing 𝐶 = 0 and the sequence {0}, lemma L21 tells us that 

{𝑏𝑛 − 𝑎𝑛} → 0 because |𝑏𝑛 − 𝑎𝑛| = |𝑎𝑛 − 𝑎𝑛| = 0 ≤ 0 for all 𝑛 ≥ 𝑁. Then apply T23 to {𝑏𝑛 − 𝑎𝑛} and 

{𝑎𝑛} to obtain: 

{𝑏𝑛} = {𝑏𝑛 − 𝑎𝑛 + 𝑎𝑛} → 0 + 𝑎 = 𝑎 

 

21) Prove that the set [5, ∞) is closed. 

 

Let {𝑥𝑛} be a sequence in [5, ∞) and assume that {𝑥𝑛} → 𝑥 ∈ ℝ. Assume for the purpose of later 

contradiction that 𝑥 < 5. Choose 𝜀 =
5−𝑥

2
. Then by convergence there is some 𝑁 ∈ ℕ such that  

𝑥𝑛 ∈ (𝑥 −
5 − 𝑥

2
, 𝑥 +

5 − 𝑥

2
) 

for all 𝑛 ≥ 𝑁. Note that 𝑥 +
5−𝑥

2
< 5 (why?), so 𝑥𝑛 ∉ [5, ∞) which is a contradiction. Hence 𝑥 ≥ 5, so 

[5, ∞) is closed.  

 

Part 4 

 

22) Let {𝑎𝑛} be a sequence that converges to 𝑎 and {𝑏𝑛} a sequence. Assume that there is an index 𝑁 

such that 𝑎𝑛 = 𝑏𝑛 for all 𝑛 ≥ 𝑁. Use the definition of convergence to prove that {𝑏𝑛} converges.  

 

Let 𝜀 > 0. We know that because {𝑎𝑛} → 𝑎, there is some 𝑁2 ∈ ℕ such that |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁2. 

If we consider 𝑁3 = max(𝑁, 𝑁2), then we see that |𝑏𝑛 − 𝑎| = |𝑎𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁3. Thus we 

have {𝑏𝑛} → 𝑎.   

 

 

23) Assume {𝑎𝑛} is monotone. Prove that {𝑎𝑛} converges if and only if {𝑎𝑛
2} converges. 

 

The forward direction is a trivial consequence of T30 taking 𝑓(𝑥) = 𝑥2. The backward direction takes 

more work.  

 

Assume {𝑎𝑛
2} converges. Because {𝑎𝑛} is monotone, {𝑎𝑛

2} is also monotone. Thus {𝑎𝑛
2} is bounded by 

theorem T35. Hence {𝑎𝑛} is also bounded. Then again by T35, {𝑎𝑛} is converges.  

 

24) Assume that |𝑎| < 1 and {𝑎𝑛} → 𝑎. Prove that {𝑎𝑛
𝑛} → 0 

 

Let us create a sequence of sequences. {{𝑎𝑛
𝑚}𝑛=1

∞ }𝑚=1
∞ . For each fixed 𝑚, T30 tells us that  

{𝑎𝑛
𝑚}𝑛=1

∞ → 𝑎𝑚. However, note that {𝑎𝑚} → 0. Hence {𝑎𝑛
𝑛}𝑛=0

∞ → 0.  

  



 

25) Let 𝐴 and 𝐵 be compact sets. Prove that 𝐴 ∪ 𝐵 is compact. 

 

By T41 both 𝐴 and 𝐵 are closed and bounded. Because they are both bounded, 𝐴 ∪ 𝐵 is obviously also 

bounded (By the larger of the two bounds). For closedness, let {𝑎𝑛} be a sequence in 𝐴 ∪ 𝐵 and assume 

{𝑎𝑛} → 𝑎 ∈ ℝ. Either {𝑎𝑛} has infinitely many terms in 𝐴, or it has infinitely many terms in 𝐵. Assume 

wlog that it has infinitely many terms in 𝐴, and consider the subsequence {𝑎𝑛𝑘
} of those terms just in 𝐴. 

Because it is a subsequence of {𝑎𝑛}, it converges to the same thing: {𝑎𝑛𝑘
} → 𝑎. However, because 𝐴 is 

closed and {𝑎𝑛𝑘} is in 𝐴, the limit, 𝑎, is in 𝐴. That is, 𝑎 ∈ 𝐴. Therefore 𝐴 ∪ 𝐵 is closed, and together with 

boundedness we see that 𝐴 ∪ 𝐵 is compact. 

 

Or a direct proof: 

Let {𝐼𝑛} be an open interval cover of 𝐴 ∪ 𝐵. Then it is simultaneously an open interval covers for 𝐴 and 

for 𝐵. Hence there are finite subcovers {𝐼𝑛}𝑛=1
𝑚1  and {𝐼𝑛}𝑛=1

𝑚2  that cover 𝐴 and 𝐵 respectively. Hence if we 

take the union of these two finite sets, we get a finite open subcover of 𝐴 ∪ 𝐵: 

{𝐼𝑛}𝑛=1
max(𝑚1,𝑚2)

 


