\qquad

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the following:

- There is no partial credit, you earn points only for what you have mastered.
- Credit is given for correct answers, or nearly correct answers.
(I won't split hairs on minor mistakes)
- There are more problems per part than is required for the maximum score (Balances out no partial credit)
- In each section you cannot earn more points than the maximum score (No extra credit)
- Please write on the blank paper provided. You may use multiple sheets if necessary. Please start each part on a new sheet (as I will be separating them into parts to grade in batches)

Part	Number of questions	Points per question	Maximum Score
1	10	15	59 (Cumulative 59)
2	6	10	20 (Cumulative 79)
3	5	5	10 (Cumulative 89)
4	5	3	11 (Cumulative 100)

Part 1

1) What does it mean for a function $f: D \rightarrow \mathbb{R}$ to have a maximum? State the definition.
2) What does it mean for a function $f: D \rightarrow \mathbb{R}$ to be uniformly continuous? State the definition.
3) State the $\varepsilon-\delta$ criterion of uniform continuity.
4) True or false and why: A one-to-one function is necessarily strictly monotonic.
5) True or false and why: If $f:[0,1) \rightarrow \mathbb{R}$ and $g:[1,2] \rightarrow \mathbb{R}$ are continuous, then the function below is also continuous.

$$
h(x):=\left\{\begin{array}{l}
f(x), \text { if } x<1 \\
g(x), \text { if } x \geq 1
\end{array}\right.
$$

6) True or false and why: $f:[5,12] \rightarrow \mathbb{R}$ given by $f(x)=3 x^{2}$ is monotonic.
7) True or false and why: If $f:[0,1] \rightarrow \mathbb{R}$ is continuous at both $x=0$ and $x=1$, then it is continuous.
8) True or false and why: If I is an interval, and $f: I \rightarrow \mathbb{R}$ is a function, then f^{-1} exists and is continuous.
9) What does it mean for a function $f: D \rightarrow \mathbb{R}$ to be monotonic? State the definition.
10) True or false and why: Every continuous function $f:[0,1] \rightarrow \mathbb{R}$ has a maximum.

Part 2

11) Show that the function $f(x)=x^{2}+3$ is continuous at $x=4$ using the sequential definition.
12) True or false and why: Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(x)>2$ and $0 \leq x<1$. It is necessarily the case that $f(1)>2$.
13) Prove that the function $f:[0,5] \rightarrow \mathbb{R}$ given by $f(x)=2 x^{2}+3$ is uniformly continuous.
14) True or false and why: $f:[0,2] \rightarrow \mathbb{R}$ given by $f(x)=2 x^{2}+3$ has a maximum.
15) True or false and why: A strictly increasing function is necessarily one-to-one.
16) Let $f:(0,1) \rightarrow \mathbb{R}$ be a decreasing function such that $f((0,1))$ is an interval. Prove that f is continuous.

Part 3

This new definition is needed for problems 17 and 18.
A function $f: D \rightarrow \mathbb{R}$ is called Lipschitz if there is a $C>0$ such that for all $u, v \in D$:

$$
|f(u)-f(v)| \leq C|u-v|
$$

17) Prove that a Lipschitz function is also continuous.
18) Prove that the function $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{x}$ is not a Lipschitz function.
19) Show that the function $f(x)=\left\{\begin{array}{r}x^{2}, \text { if } x<1 \\ 2 x-1 \text {, if } x \geq 1\end{array}\right.$ is continuous at $x_{0}=1$.
20) Let S be a set that is not sequentially compact that contains no unbounded sequences. Prove that there is a sequence in S that converges to a point not in S.
21) Prove that $f(x)=x^{2}$ is continuous at $x=5$ using the $\varepsilon-\delta$ criterion.

Part 4

22) Let $f: D \rightarrow \mathbb{R}$ be a function. A point such that $f(x)=x$ is called a fixed point. If the function $g:[-1,1] \rightarrow \mathbb{R}$ is continuous and $g(-1)>-1$ and $f(1)<1$, prove that g has a fixed point.
23) Using the $\varepsilon-\delta$ criterion, prove that $f(x)=x^{3}$ is continuous at an arbitrary point x_{0}.
24) State what it means to be periodic, then prove that a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous.
25) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and one-to-one. Assume $f(a)<f(b)$ and $c \in[a, b]$. Prove that $c<f(b)$.
26) Prove that $f:\{0\} \rightarrow \mathbb{R}$ is continuous at 0 , regardless of how f is defined.
