\qquad

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the following:

- There is no partial credit, you earn points only for what you have mastered.
- Credit is given for correct answers, or nearly correct answers.
(I won't split hairs on minor mistakes)
- There are more problems per part than is required for the maximum score (Balances out no partial credit)
- In each section you cannot earn more points than the maximum score (No extra credit)
- Please write on the blank paper provided. You may use multiple sheets if necessary. Please start each part on a new sheet (as I will be separating them into parts to grade in batches)

Part	Number of questions	Points per question	Maximum Score
1	10	15	59 (Cumulative 59)
2	6	10	20 (Cumulative 79)
3	5	5	10 (Cumulative 89)
4	5	3	11 (Cumulative 100)

Part 1

1) What does it mean for a function $f: D \rightarrow \mathbb{R}$ to have a maximum? State the definition.
$f\left(x_{0}\right)$ is a maximum if $f\left(x_{0}\right) \geq f(x)$ for all $x \in D$.
2) What does it mean for a function $f: D \rightarrow \mathbb{R}$ to be uniformly continuous? State the definition.

If $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are sequences such that $\left\{u_{n}-v_{n}\right\} \rightarrow 0$, then $\left\{f\left(u_{n}\right)-f\left(v_{n}\right)\right\} \rightarrow 0$
3) State the $\varepsilon-\delta$ criterion of uniform continuity.

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{u, v \in D}(|u-v|<0 \Rightarrow|f(u)-f(v)|<0)
$$

4) True or false and why: A one-to-one function is necessarily strictly monotonic.

False. Consider a discontinuous function which jumps around a lot. For instance, $y=x$ when $x \in \mathbb{Q}$ and $y=-x$ when $x \notin \mathbb{Q}$.
5) True or false and why: If $f:[0,1) \rightarrow \mathbb{R}$ and $g:[1,2] \rightarrow \mathbb{R}$ are continuous, then the function below is also continuous.

$$
h(x):=\left\{\begin{array}{l}
f(x), \text { if } x<1 \\
g(x), \text { if } x \geq 1
\end{array}\right.
$$

False. There's no reason they have to meet up. For example if $f(x)=2 x$ and $g(x)=3 x$.
6) True or false and why: $f:[5,12] \rightarrow \mathbb{R}$ given by $f(x)=3 x^{2}$ is monotonic.

True. Note that $x>0$ in the domain, so if $x_{1}>x_{2}$, then $x_{1}^{2}>x_{2}^{2}$.
7) True or false and why: If $f:[0,1] \rightarrow \mathbb{R}$ is continuous at both $x=0$ and $x=1$, then it is continuous.

No... lol.... It could have a break somewhere in between, like at $x=0.5$. Such as:

$$
f(x)=\left\{\begin{array}{l}
2, \text { if } x<0.5 \\
3, \text { if } x \geq 0.5
\end{array}\right.
$$

8) True or false and why: If I is an interval, and $f: I \rightarrow \mathbb{R}$ is a function, then f^{-1} exists and is continuous.

False. Consider for instance $f(x)=5$ on $I=[0,1]$. It doesn't even have an inverse.
9) What does it mean for a function $f: D \rightarrow \mathbb{R}$ to be monotonic? State the definition.

It means that f is either increasing or decreasing.
(Technically also either strictly increasing or strictly increasing, but those are included in increasing or decreasing above.)
10) True or false and why: Every continuous function $f:[0,1] \rightarrow \mathbb{R}$ has a maximum.

True. This is an application of the extreme value theorem.

Part 2

11) Show that the function $f(x)=x^{2}+3$ is continuous at $x=4$ using the sequential definition.

Let $\left\{u_{n}\right\}$ be a sequence such that $\left\{u_{n}\right\} \rightarrow 4$. Then by the polynomial property of convergence (T30), $\left\{u_{n}^{2}+3\right\} \rightarrow 4^{2}+3=19$. Because $f(4)=19, f$ is continuous at $x=4$.
12) True or false and why: Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(x)>2$ and $0 \leq x<1$. It is necessarily the case that $f(1)>2$.

This is false, it could be way up and away from 2 , such as $f(x)=x+3$.
13) Prove that the function $f:[0,5] \rightarrow \mathbb{R}$ given by $f(x)=2 x^{2}+3$ is uniformly continuous.

We know that f is continuous because it is a polynomial. By T51, f is uniformly continuous on $[0,5]$.
14) True or false and why: $f:[0,2] \rightarrow \mathbb{R}$ given by $f(x)=2 x^{2}+3$ has a maximum.

We know that f is continuous because it is a polynomial. By T47, f attains a maximum.
15) True or false and why: A strictly increasing function is necessarily one-to-one.

True. $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}>x_{2}$ because it is strictly increasing. In particular, if $u \neq v$, assume wlog $u>v$. Hence $f(u)>f(v)$.
16) Let $f:(0,1) \rightarrow \mathbb{R}$ be a decreasing function such that $f((0,1))$ is an interval. Prove that f is continuous.

This is a direct result of T53 because f is monotone.

Part 3

This new definition is needed for problems 17 and 18.
A function $f: D \rightarrow \mathbb{R}$ is called Lipschitz if there is a $C>0$ such that for all $u, v \in D$:

$$
|f(u)-f(v)| \leq C|u-v|
$$

17) Prove that a Lipschitz function is also continuous.

Let $\varepsilon>0$
Choose $\delta=\frac{\varepsilon}{C}$
Let $x_{1}, x_{2} \in D$ and assume $\left|x_{1}-x_{2}\right|<\delta$.

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq C\left|x_{1}-x_{2}\right| \leq C \delta \leq C \frac{\varepsilon}{C}=\varepsilon
$$

Thus f is uniformly continuous and therefore continuous.
18) Prove that the function $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{x}$ is not a Lipschitz function.

Let $C>0$. We need to find points u, v such that $|f(u)-f(v)|>C|u-v|$. Take $u=0$ and $v=\frac{1}{2 C^{2}}$.

$$
|f(u)-f(v)|=\left|0-\sqrt{\frac{1}{2 C^{2}}}\right|=\sqrt{\frac{1}{2 C^{2}}}=\frac{1}{\sqrt{2} C}>\frac{1}{2 C}=C \cdot \frac{1}{2 C^{2}}=C|v|
$$

19) Show that the function $f(x)=\left\{\begin{array}{r}x^{2}, \text { if } x<1 \\ 2 x-1, \text { if } x \geq 1\end{array}\right.$ is continuous at $x_{0}=1$.

Let $\left\{u_{n}\right\} \rightarrow 1$. If beyond some point $u_{n}<1$, then $\left\{f\left(u_{n}\right)\right\}=\left\{u_{n}^{2}\right\} \rightarrow 1$. On the other hand if beyond some point $u_{n}>1$, then $\left\{f\left(u_{n}\right)\right\}=\left\{2 u_{n}-1\right\} \rightarrow 1$. Hence $\left\{f\left(u_{n}\right)\right\} \rightarrow 1$. Lastly because $f(1)=1$, it is thus continuous.
20) Let S be a set that is not sequentially compact that contains no unbounded sequences. Prove that there is a sequence in S that converges to a point not in S.
21) Prove that $f(x)=x^{2}$ is continuous at $x=5$ using the $\varepsilon-\delta$ criterion.

Let $\varepsilon>0$.
Choose $\delta=\min \left(\frac{\varepsilon}{11}, 1\right)$.
Let $x \in \mathbb{R}$ and assume $|x-5|<\delta$.

$$
\left|x^{2}-5^{2}\right|=|x-5| \cdot|x+5| \leq \delta|x+5| \leq \delta(|x|+|5|) \leq \delta(6+5)=11 \delta<\frac{11 \varepsilon}{11}=\varepsilon
$$

Part 4

22) Let $f: D \rightarrow \mathbb{R}$ be a function. A point such that $f(x)=x$ is called a fixed point. If the function $g:[-1,1] \rightarrow \mathbb{R}$ is continuous and $g(-1)>-1$ and $f(1)<1$, prove that g has a fixed point.

Consider the function $h(x)=x-g(x)$. We then have:

$$
\begin{gathered}
h(1)=1-g(1)<1-1=0 \\
h(-1)=-1-g(-1)>-1-(-1)=0
\end{gathered}
$$

Hence by the intermediate value theorem there is a point $c \in[-1,1]$ such that $h(c)=0$. This c is a fixed point:

$$
\begin{gathered}
0=h(c)=x-g(x) \\
g(x)=x
\end{gathered}
$$

23) Using the $\varepsilon-\delta$ criterion, prove that $f(x)=x^{3}$ is continuous at an arbitrary point x_{0}.

Let $x_{0} \in \mathbb{R}$
Let $\varepsilon>0$
Choose $\delta=\min \left(1, \frac{\varepsilon}{3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1}\right)$
Let $x \in \mathbb{R}$ and assume $\left|x-x_{0}\right|<\delta$

$$
\begin{gathered}
\left|f(x)-f\left(x_{0}\right)\right|=\left|x^{3}-x_{0}^{3}\right|=\left|x-x_{0}\right| \cdot\left|x^{2}+x x_{0}+x_{0}^{2}\right|<\delta\left(\left|x^{2}\right|+|x| \cdot\left|x_{0}\right|+\left|x_{0}^{2}\right|\right) \\
\leq \delta\left(\left(1+\left|x_{0}\right|\right)^{2}+\left(\left|x_{0}\right|+1\right)\left|x_{0}\right|+\left|x_{0}\right|^{2}\right)=\delta\left(3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1\right)<\frac{3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1}{3\left|x_{0}\right|^{2}+3\left|x_{0}\right|+1} \varepsilon=\varepsilon
\end{gathered}
$$

24) State what it means to be periodic, then prove that a periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous.
f is periodic if there is a period p such that $f(x)=f(x+p)$. Weird, something is missing. I think perhaps we meant to assume f is continuous. Because this is very much not true. Consider the periodic function below that is not uniformly continuous.

$$
f(x)=\vdash\left\{\begin{array}{r}
\tan (x), \text { if } x \neq \frac{\pi n}{2} \\
0, \text { if } x=\frac{n \pi}{2}
\end{array}\right.
$$

25) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and one-to-one. Assume $f(a)<f(b)$ and $c \in[a, b]$. Prove that $c<f(b)$.

This question is all messed up. In fact, as stated it's easy to come up with a counterexample such as below. Without asking for any clarification during the test, that's how to answer a messed up question. Treat it exactly as stated. Better to ask about it if you're confused and suspect something is amiss.

This is actually false. Take $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=-5+x$. This is continuous and one to one with $f(0)<f(1)$. Then take $c=\frac{1}{2}$. However, $\frac{1}{2} \nless f(1)$.

This is what I intended:
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and one-to-one. Assume $f(a)<f(b)$ and $c \in(a, b)$.
Prove that $f(c)<f(b)$.

Suppose that $f(c) \geq f(b)$. Then consider the real number $m:=\frac{f(c)+f(b)}{2}$. The intermediate value theorem there is a point $x_{1} \in[a, c]$ such that $f\left(x_{1}\right)=m$. Similarly there is a point $x_{2} \in[c, b]$ such that $f\left(x_{2}\right)=m$. Note that because f is one to one, $f(c) \neq f(b)$, so $f(c) \neq m$. Hence $x_{1}, x_{2} \neq c$. Thus $x_{1} \neq$ x_{2} and so f is not one to one.
26) Prove that $f:\{0\} \rightarrow \mathbb{R}$ is continuous at 0 , regardless of how f is defined.

