Name \qquad Test 3, Fall 2020

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the following:

- There is no partial credit, you earn points only for what you have mastered.
- Credit is given for correct answers, or nearly correct answers.
(I won't split hairs on minor mistakes)
- There are more problems per part than is required for the maximum score (Balances out no partial credit)
- In each section you cannot earn more points than the maximum score (No extra credit)
- Please write on the blank paper provided. You may use multiple sheets if necessary. Please start each part on a new sheet (as I will be separating them into parts to grade in batches)

Part	Number of questions	Points per question	Maximum Score
1	10	15	59 (Cumulative 59)
2	6	10	20 (Cumulative 79)
3	5	5	10 (Cumulative 89)
4	4	3	11 (Cumulative 100)

Part 1

1) Let $x \in \mathbb{R}$. What is a neighborhood of x ? State the definition.
2) What is the derivative of $f(x)=\left(x^{2}+2\right)^{6}\left(x^{3}+2 x\right)^{4}$?
3) $f: I \rightarrow \mathbb{R}$ be a function where I is an interval. What does it mean for f to be differentiable? State the definition.
4) Let $f:[0,10] \rightarrow \mathbb{R}$ be given by $f(x)=\frac{1}{2} x^{2}-5 x+2$. Find the point that Rolle's Theorem guarantees exists.
5) Let $f: D \rightarrow \mathbb{R}$ be a function. What does it mean for $x_{0} \in D$ to be a local maximizer? State the definition.
6) Find a partition of $[0,5]$.
7) What is an upper integral of f ? State the definition.
8) Let P be a partition of $[a, b]$. What is a refinement of P ? State the definition.
9) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. What does it mean for f to be integrable? State the definition.
10) What does it mean for a function $f:[a, b] \rightarrow \mathbb{R}$ to be piecewise constant? State the definition.

Part 2

11) True or false and why? If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then it is differentiable.
12) Use the definition of the derivative to find the derivative of $f(x)=2 x^{2}+3$ at $x=5$.
13) Sketch a graph of $y=x^{3}+6 x^{2}+9 x-6$.
14) Let $P=\{0,2,3,4\}$ and $f:[0,4] \rightarrow \mathbb{R}$ be given by $f(x)=2 x$. Find $U(f, P)$ and $L(f, P)$.
15) Explain in words or illustrate on a graph the difference between $L(f, P)$ and $\int_{\underline{a}}^{b} f$.
16) Find the point that the Mean Value Theorem guarantees exists for the function $f(x)=x^{2}$ on the interval $[0,5]$. Then illustrate the Mean Value Theorem on a graph using this point.

Part 3

17) True or false and why: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and strictly increasing, then $f^{\prime}(x)>0$ for all x.
18) Let $f(x)=\left\{\begin{array}{l}x-x^{2}, x \in \mathbb{Q} \\ x+x^{2}, x \notin \mathbb{Q}\end{array}\right.$. Show that $f^{\prime}(0)=1$.
19) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded functions such that $g(x) \leq f(x)$ and P be a partition of $[a, b]$. Prove that $L(g, P) \leq L(f, P)$.
20) Using theorems only up to $\mathbf{T 7 5}$, prove that $L(f, P) \leq U(f, P)$ for a function $f:[a, b] \rightarrow \mathbb{R}$ and a partition P.
21) Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $x=0$. Prove:

$$
\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(0)}{x}=0
$$

Part 4

22) Use the quotient rule to prove the product rule.
23) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and assume that $f^{\prime}(x)=0$ has n solutions. Prove that $f(x)=0$ has at most $n+1$ solutions.
24) Using theorems only up to $\mathbf{T 7 7}$, prove that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$ for a function $f:[a, b] \rightarrow \mathbb{R}$ and partitions P_{1} and P_{2}.
25) Assume that $f:[0,4] \rightarrow \mathbb{R}$ satisfies $f(x) \geq 0$. Prove that $\int_{\underline{0}}^{4} f \geq 0$.
