Test 3, Fall 2020

This test comes in four parts. You may answer as many or as few questions as you like. Take note of the following:

- There is no partial credit, you earn points only for what you have mastered.
- Credit is given for correct answers, or *nearly* correct answers. (I won't split hairs on minor mistakes)
- There are more problems per part than is required for the maximum score (Balances out no partial credit)
- In each section you cannot earn more points than the maximum score (No extra credit)
- Please write on the blank paper provided. You may use multiple sheets if necessary. Please start each part on a new sheet (as I will be separating them into parts to grade in batches)

Part	Number of questions	Points per question	Maximum Score
1	10	15	59 (Cumulative 59)
2	6	10	20 (Cumulative 79)
3	5	5	10 (Cumulative 89)
4	4	3	11 (Cumulative 100)

Part 1

1) Let $x \in \mathbb{R}$. What is a <u>neighborhood</u> of x? State the definition.

2) What is the derivative of $f(x) = (x^2 + 2)^6 (x^3 + 2x)^4$?

3) $f: I \to \mathbb{R}$ be a function where *I* is an interval. What does it mean for *f* to be <u>differentiable</u>? State the definition.

4) Let $f: [0,10] \to \mathbb{R}$ be given by $f(x) = \frac{1}{2}x^2 - 5x + 2$. Find the point that Rolle's Theorem guarantees exists.

5) Let $f: D \to \mathbb{R}$ be a function. What does it mean for $x_0 \in D$ to be a <u>local maximizer</u>? State the definition.

6) Find a partition of [0,5].

7) What is an <u>upper integral</u> of f? State the definition.

8) Let *P* be a partition of [a, b]. What is a <u>refinement</u> of *P*? State the definition.

9) Let $f: [a, b] \to \mathbb{R}$ be a bounded function. What does it mean for f to be <u>integrable</u>? State the definition.

10) What does it mean for a function $f: [a, b] \to \mathbb{R}$ to be <u>piecewise constant</u>? State the definition.

Name

Part 2

11) True or false and why? If $f : \mathbb{R} \to \mathbb{R}$ is continuous, then it is differentiable.

12) Use the definition of the derivative to find the derivative of $f(x) = 2x^2 + 3$ at x = 5.

13) Sketch a graph of $y = x^3 + 6x^2 + 9x - 6$.

14) Let $P = \{0,2,3,4\}$ and $f: [0,4] \to \mathbb{R}$ be given by f(x) = 2x. Find U(f, P) and L(f, P).

15) Explain in words or illustrate on a graph the difference between L(f, P) and $\int_{a}^{b} f$.

16) Find the point that the Mean Value Theorem guarantees exists for the function $f(x) = x^2$ on the interval [0,5]. Then illustrate the Mean Value Theorem on a graph using this point.

Part 3

17) True or false and why: If $f: \mathbb{R} \to \mathbb{R}$ is differentiable and strictly increasing, then f'(x) > 0 for all x.

18) Let
$$f(x) = \begin{cases} x - x^2, x \in \mathbb{Q} \\ x + x^2, x \notin \mathbb{Q} \end{cases}$$
. Show that $f'(0) = 1$.

19) Let $f, g: [a, b] \to \mathbb{R}$ be bounded functions such that $g(x) \le f(x)$ and P be a partition of [a, b]. Prove that $L(g, P) \le L(f, P)$.

20) Using theorems only up to T75, prove that $L(f, P) \le U(f, P)$ for a function $f: [a, b] \to \mathbb{R}$ and a partition P.

21) Assume $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x = 0. Prove:

$$\lim_{x \to 0} \frac{f(x^2) - f(0)}{x} = 0$$

Part 4

22) Use the quotient rule to prove the product rule.

23) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and assume that f'(x) = 0 has n solutions. Prove that f(x) = 0 has at most n + 1 solutions.

24) Using theorems only up to T77, prove that $L(f, P_1) \leq U(f, P_2)$ for a function $f: [a, b] \rightarrow \mathbb{R}$ and partitions P_1 and P_2 .

25) Assume that $f: [0,4] \to \mathbb{R}$ satisfies $f(x) \ge 0$. Prove that $\int_{0}^{4} f \ge 0$.