Name \qquad Solutions \qquad
Given the function $f(z)=z^{2}$ and the closed region R shaded in below, precisely find and illustrate $f(R)$.

We know that when we square a complex number we square the magnitude and double the argument (angle).

This region has angles that go from $\frac{\pi}{2}$ to π, so the resulting region $f(R)$ will go between π and 2π. Hence it will be contained in quadrants 3 and 4.

Furthermore, we can identify exactly what the four boundary lines do:

Right side: $\{i t \mid 0 \leq t \leq 1\} \mapsto\left\{-t^{2} \mid 0 \leq t \leq 1\right\}$
Bottom: $\{t \mid-1 \leq t \leq 0\} \mapsto\{t \mid 0 \leq t \leq 1\}$
Top: $\{t+i \mid-1 \leq t \leq 0\} \mapsto\left\{(t+i)^{2} \mid-1 \leq t \leq 0\right\}=\left\{t^{2}-1+i 2 t \mid-1 \leq t \leq 0\right\}$
Left side: $\{-1+i t \mid 0 \leq t \leq 1\} \mapsto\left\{(-1+i t)^{2} \mid 0 \leq t \leq 1\right\}=\left\{1-t^{2}-i 2 t \mid 0 \leq t \leq 1\right\}$

We can graph each of these by looking at them as parametric functions. For example we'll work out what happens to the top, given by $t^{2}-1+i 2 t$ for $t \in[-1,0]$.

$$
\begin{gathered}
x=t^{2}-1 \\
y=2 t \\
x+1=t^{2} \\
-\sqrt{x+1}=t
\end{gathered}
$$

Note in particular that we took the negative root because t is negative. If t were positive we would have taken the positive root.

$$
\therefore y=-2 \sqrt{x+1}
$$

Putting all 4 of these together we get:

