Name \qquad

1) Find the derivative of $f(z)=z^{5} e^{z^{3}}$.

$$
f^{\prime}(z)=5 z^{4} e^{z^{3}}+z^{5}\left(3 z^{2}\right) e^{z^{3}}
$$

2) Show that the function $f(z)=z^{2}+(2+i) z$ is analytic.

$$
\begin{gathered}
f(z)=f(x+i y)=(x+i y)^{2}+(2+i)(x+i y)=x^{2}-y^{2}+2 x-y+i(2 x y+x+2 y) \\
u_{x}(x, y)=\frac{\partial}{\partial x}\left(x^{2}-y^{2}+2 x-y\right)=2 x+2 \\
v_{y}(x, y)=\frac{\partial}{\partial y}(2 x y+x+2 y)=2 x+2 \\
u_{y}(x, y)=\frac{\partial}{\partial y}\left(x^{2}-y^{2}+2 x-y\right)=-2 y-1 \\
v_{x}(x, y)=\frac{\partial}{\partial x}(2 x y+x+2 y)=2 y+1
\end{gathered}
$$

Note that indeed the Cauchy-Riemann equations are satisfied: $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.

Also, the partial deriviatives are lal continuous.

Therefore f is analytic.
3) Find the derivative of $f(z)=\frac{3 z^{2}+2}{5 z^{2}-7 z}$ at infinity.

In order to evaluate $f(z)$ at infinity, we instead consider $f\left(\frac{1}{t}\right)$ at $t=0$:

$$
\begin{gathered}
g(t)=f\left(\frac{1}{t}\right)=\frac{\frac{3}{t^{2}}+2}{\frac{5}{t^{2}}-\frac{7}{t}}=\frac{3+2 t^{2}}{5-7 t} \\
g^{\prime}(t)=\frac{(4 t)(5-7 t)-\left(3+2 t^{2}\right)(-7)}{(5-7 t)^{2}} \\
t^{\prime}(0)=\frac{21}{25}
\end{gathered}
$$

