Name \qquad Complex Analysis, Spring 2017, Test 1

Choose FOUR of the problems below to complete for 25 points each. Start each problem at the top of a new sheet/side of paper.

If you have time to complete all 5 problems, the problem on the last page will be counted for up to 5 bonus points.

1) Solve $z^{4}+81=0$ completely.
2) Define the square S in the complex plane as the square that has vertices at $0, i,-1+i$, and -1 . Let $f(z)=z^{2}$. Precisely find the region, $f(S)$, the region that the square maps to via the function f.
3) Let z_{1}, z_{2}, z_{3}, and z_{4} be complex numbers. Prove that $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$.
4) Find the limit below.

$$
\lim _{z \rightarrow e^{\frac{4 \pi}{3} i}}\left(z-e^{\frac{4 \pi}{3} i}\right)\left(\frac{z^{2}}{z^{3}-1}\right)
$$

5) Let $z=x+i y$ where x and y are real variables. Is the function $f(z)$ given below an analytic function? State all theorems that you use.

$$
f(z)=3 x^{2}+2 x-3 y^{2}-1+i(6 x y+2 y)
$$

