Name \qquad

Choose FOUR of the problems below to complete for 25 points each. Start each problem at the top of a new sheet/side of paper. After turning in TWO of the problems, you may take out your notes/book/electronic devices left flat on your desk on airplane mode, and complete TWO more problems.

All answers must be justified: show your work!

1) Find the series expansion for $f(z)=\frac{z}{(z+i)(z-2)}$ for $1<|z|<2$.
2) Find the residue of the function below at $z_{0}=6 i$.

$$
f(z)=\frac{\sin (2 z)}{(z-6 i)^{17}}
$$

3) Calculate the integral below using complex analysis.

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

4) A meromorphic function is a function whose singularities on \mathbb{C} are all isolated poles. Suppose $f(z)$ is meromorphic with a pole of order 3 at $z_{0}=7+2 i$. What kind of singularity, if any, is the derivative $f^{\prime}(z)$ guaranteed to have at $7+2 i$?
5) The function $\Gamma(z):=\int_{0}^{\infty} x^{z-1} e^{-x} d x$ is called the gamma function. It generalizes the factorial function in that $\Gamma(n)=(n-1)$! for all positive integers n. The integral definition above converges only for $\operatorname{Re}(z)>0$. However, Γ itself is defined on all of \mathbb{C}, except for singularities at $\{0,-1,-2,-3, \ldots\}$. Explain in several English sentences and/or pictures how one could theoretically find $\Gamma(-1.5)$. You do not have to actually try to calculate this value.
