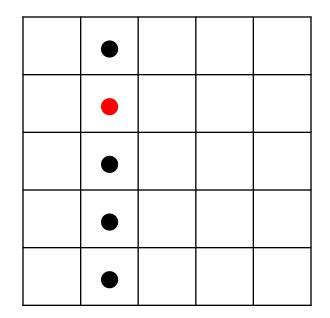
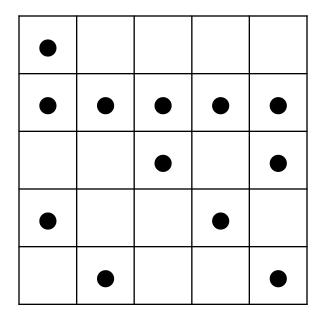
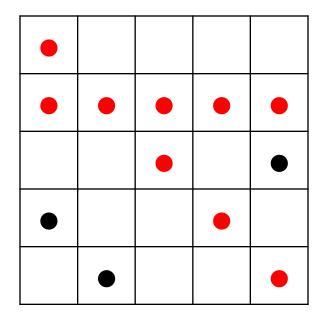
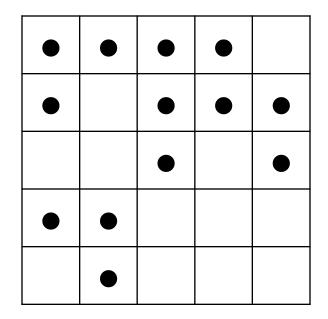

Generation in the Bingo Closure

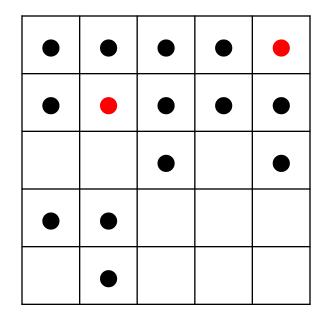
J. Beyerl*, Robert E. Jamison, J. Bowman Light, Clemson University

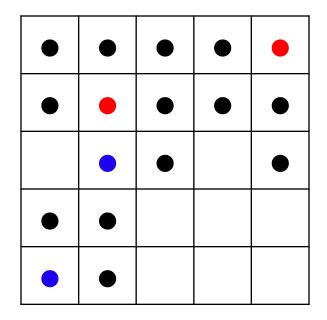

- 5x5 playing board
- A square s is dependent on a set S when s completes a line.

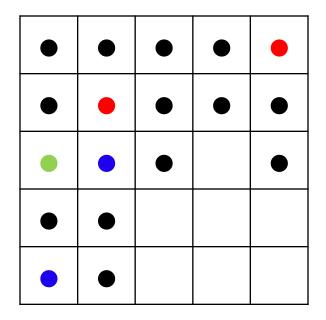

- 5x5 playing board
- A square s is dependent on a set S when s completes a line.

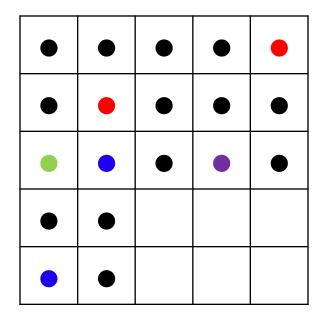

- 5x5 playing board
- A square s is dependent on a set S when s completes a line.

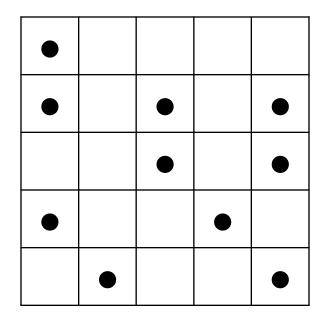


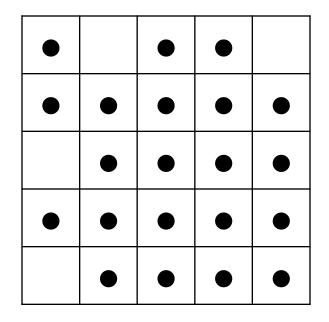

 S is closed when no squares that are dependent on S are not in S.

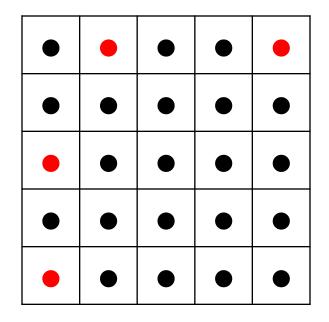


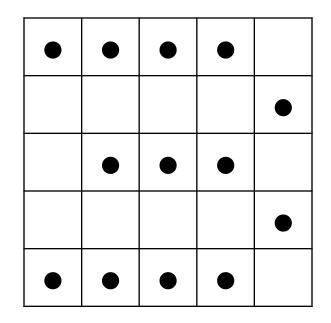

 S is closed when no squares that are dependent on S are not in S.

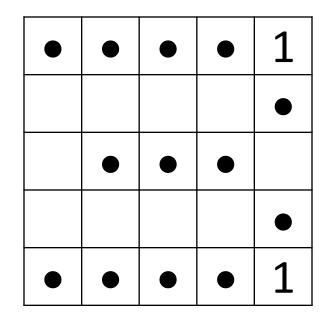


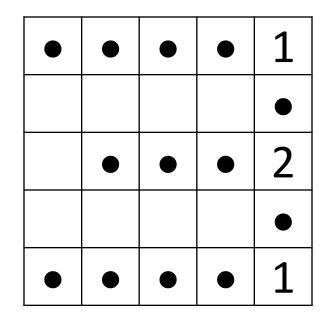


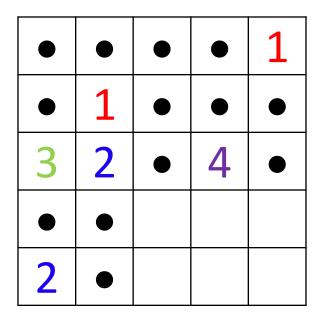


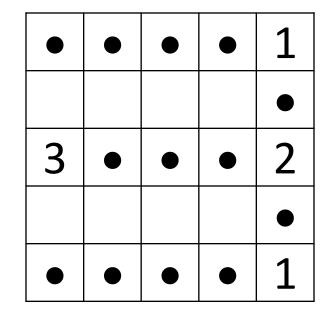

- S is independent when no square in S is dependent on S.
- Don't need this slide?

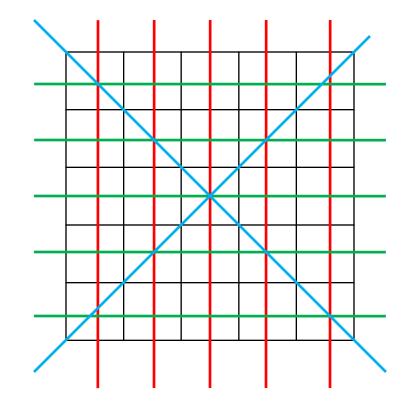


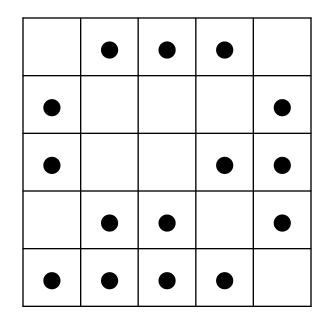

 A generating set for the board is a set S whose closure is the entire board.

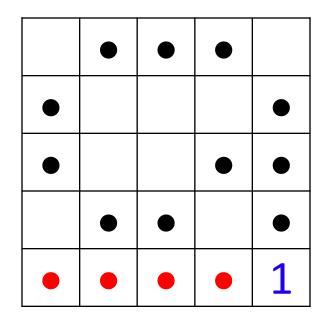


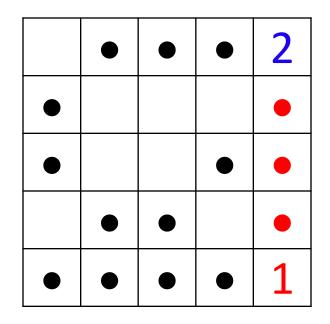

 A generating set for the board is a set S whose closure is the entire board.

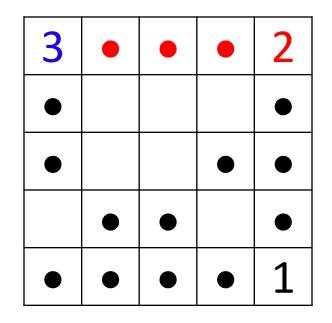


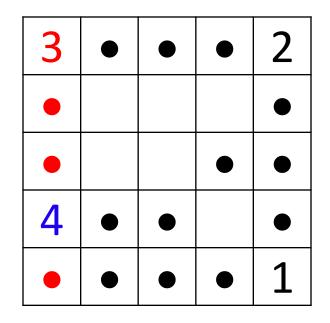


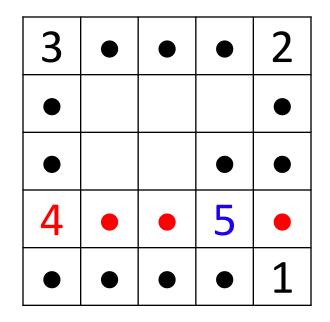


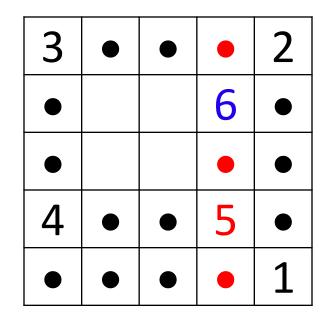

- What is the maximum depth of a set *S*?
- Easy upper bound: 12

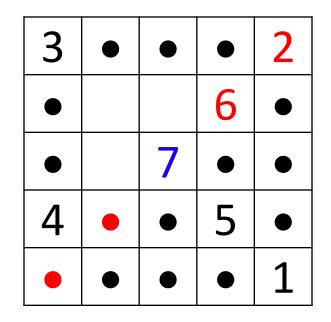

- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

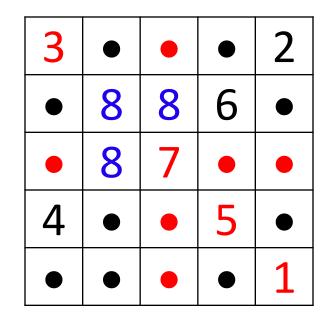

- What is the maximum depth of a set *S*?
- Easyish lower bound: 8


- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

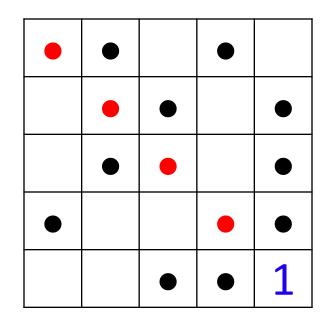

- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

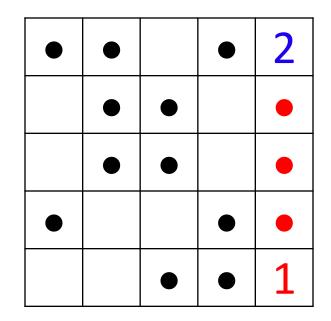

- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

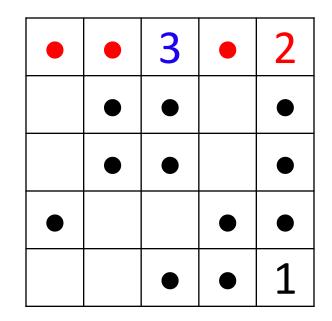

- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

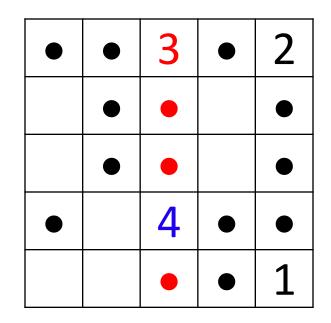

- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

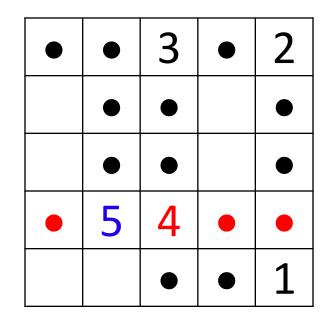
- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

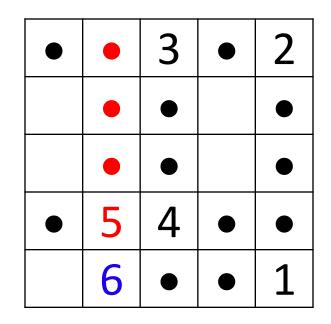

- What is the maximum depth of a set *S*?
- Easyish lower bound: 8

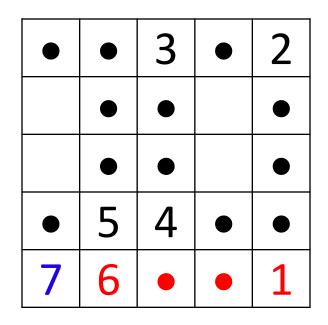

- What is the maximum depth of a set *S*?
- Actually: 10

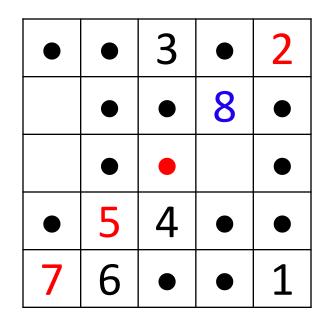

- What is the maximum depth of a set *S*?
- Actually: 10

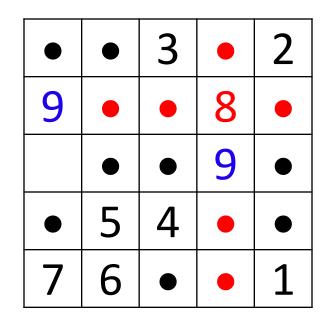

- What is the maximum depth of a set *S*?
- Actually: 10


- What is the maximum depth of a set *S*?
- Actually: 10


- What is the maximum depth of a set *S*?
- Actually: 10

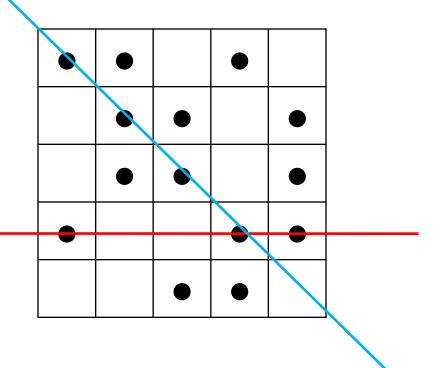

- What is the maximum depth of a set *S*?
- Actually: 10


- What is the maximum depth of a set *S*?
- Actually: 10

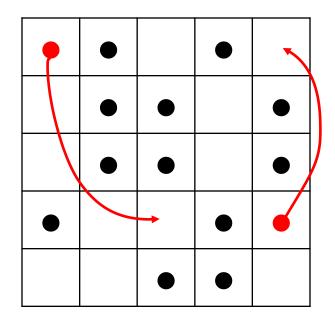

- What is the maximum depth of a set *S*?
- Actually: 10

- What is the maximum depth of a set *S*?
- Actually: 10

- What is the maximum depth of a set *S*?
- Actually: 10

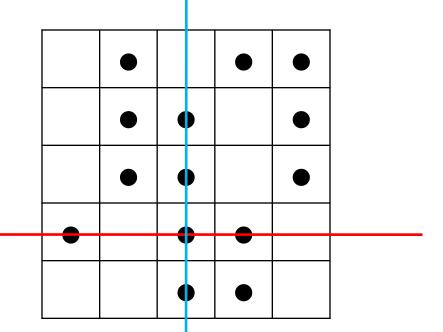

- What is the maximum depth of a set *S*?
- Actually: 10

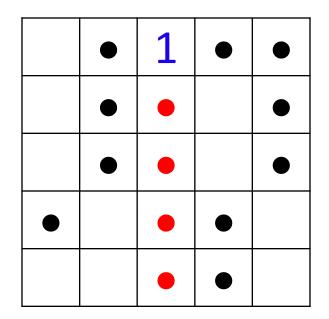
		3		2
9			8	•
10		•	9	
•	5	4		
7	6			1


- What is the maximum depth of a set *S*?
- Actually: 10
- ...And this is optimal.

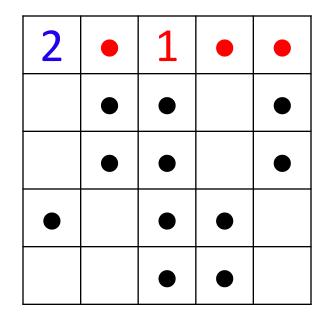
		3		2
9			8	•
10			9	
	5	4		•
7	6			1

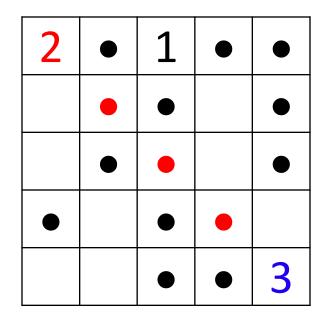
- A depth of 14 is optimal
- The previous solution to the 5x5 does not easily generalize because it started on a diagonal.


- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment


- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment

	•	
•	•	


- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical


- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

2	1	
		•
•		4
		3

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

2		1		
	\bullet	\bullet		ullet
•	5	•	•	4
				3

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

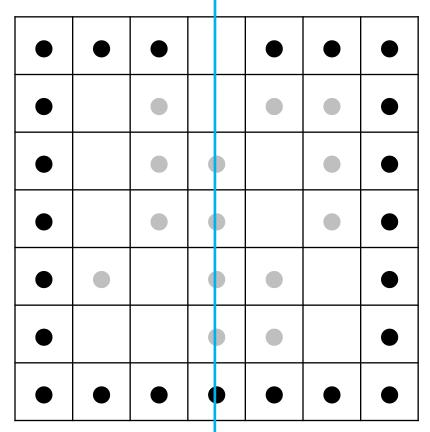
2		1	
	•		•
•	5	•	4
	6		3

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

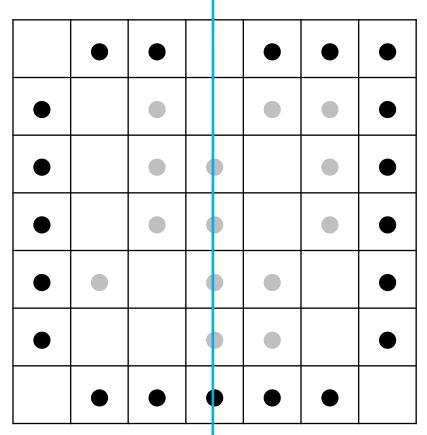
2		1		
	\bullet	•		•
				•
•	5	•		4
7	6	•	•	3

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

2		1		•
			8	
		•		•
	5			4
7	6			3


- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

2		1		
9		•	8	•
			9	•
	5		•	4
7	6			3


- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- …and now it starts on a vertical

2		1		
9			8	•
10			9	
	5	•		4
7	6			3

- A depth of 14 is optimal
- Fill in the rest avoiding the starting vertical

- A depth of 14 is optimal
- Fill in the rest avoiding the starting vertical
- …and we can get the corners for free

- A depth of 14 is optimal
- Fill in the rest avoiding the starting diagonal
- …and we can get the corners for free

-1			0			
	2		1			
•	9			8		
•	10			9		
•		5			4	
•	7	6			3	
-2					•	-3

Bingo Closure, nxn case, n odd

- A depth of 2n is optimal
- Continue this pattern

	•	•	•	•	•	•	•	•	•	•	•	•		•
•		•	•	•	•	•	•	•	●	•	•		•	•
•	•		•	•	•	•	•	•	•	•		•	•	•
•	•	•		•	•	•	•	•	•		•	•	•	•
•	•	•	•		•	•		•	•	•	•	•	•	•
•	•	•	•	•		•				•	•	•	•	•
•	•	•	•	•		•				•	•	•	•	•
•	•	•	•	•		•				•	•	•	•	•
•	•	•	•	•						•	•	•	•	•
•	•	•	•	•						•	•	•	•	•
•	•	•	•		•	•	•	•	•		•	•	•	•
•	•	•		•	•	•	•	•	•	•		•	•	•
•	•		•	•	•	•	•	•	•	•	•		•	•
•		•	•	•	•	•	•	•	•	•	•	•		•
	•	•	•	•	•	•	•	•	•	•	•	•	•	

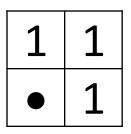
Bingo Closure, nxn case, n odd

- A depth of 2n is optimal
- Continue this pattern

3	•	•	•	•	•	•	•	•	•	•	•	•	4	•
•	7	•	•	•	•	•	•	•	•	•	•	8	•	•
•	•	11	•	•	•	•	•	•	•	•	12	•	•	•
•	•	•	15	•	•	•	•	•	•	16	•	•	•	•
•	•	•	•	19	•	•	20	•	•	•	•	•	•	•
•	•	•	•	•	22		21			•	•	٠	•	•
•	•	•	•	•	29			28		•	•	٠	•	•
•	•	•	•	•	30			29		•	•	•	•	•
•	•	•	•	•	•	25			24	•	•	•	•	•
•	•	•	•	•	27	26			23	•	•	•	•	•
•	•	•	•	18	•	•	•	•	•	17	•	•	•	•
•	•	•	14	•	•	•	•	•	•	•	13	•	•	•
•	•	10	•	•	•	•	•	•	•	•	•	9	•	•
•	6	•	•	•	•	•	•	•	•	•	•	•	5	•
2	•	•	•	•	•	•	•	•	•	•	•	•	•	1

Bingo Closure, nxn case, n even

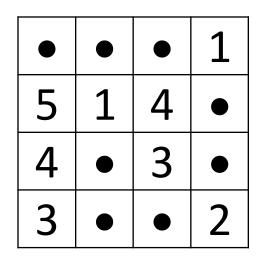
- A depth of 2n is optimal
- A similar pattern, based off a solution to the 6x6 case

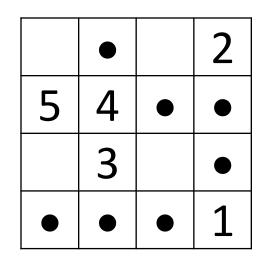

	•	•	•	•	•	•	•	•	•	•	•		•
•		•	•	•	•	•	•	•	•	•		•	•
•	•		●	●	•	●	●	•	•		•	•	•
•	•	•		•	•	•		•	•	•	•	•	•
•	•	●	●		•	٠		•	•	•	•	•	•
•	•	•	●		•	•			•	•	•	•	•
•	•	●	●		•				•	•	•	•	•
•	٠	●	۲							•	•	•	•
•	•	●	●			•		•		•	•	•	•
•	•	•	•		•					•	•	•	•
•	•	•		•	•	•	•	•	•		•	•	•
•	•		●	•	•	•	•	•	•	•		•	•
•		•	•	•	•	•	•	•	•	•	•		•
	•	•	•	•	•	•	•	•	•	•	•	•	

Bingo Closure, nxn case, n even

- A depth of 2n is optimal
- A similar pattern, based off a solution to the 6x6 case

3	•	•	•	•	•	•	•	•	•	•	•	4	•
•	7	•	•	•	•	•	•	•	•	•	8	•	•
•	•	11	•	•	•	•	•	•	•	12	•	•	•
•	•	•	15	•	•	•	16	•	•	•	•	•	•
•	•	•	•	18		•	17			•	•	•	•
•	•	•	•	27		•		26		•	•	•	•
•	•	•	•	28				27		•	•	•	•
•	•	•	•	•	22	23				•	•	•	•
•	•	•	•	•	21	•			20	•	•	•	•
•	•	•	•	25		24	•		19	•	•	•	•
•	•	•	14	•	•	•	•	•	•	13	•	•	•
•	•	10	•	•	•	•	•	•	•	•	9	•	•
•	6	•	•	•	•	•	•	•	•	•	•	5	•
2	•	•	•	•	•	•	•	•	•	•	•	•	1


• A depth of 1 is trivially optimal.



- A depth of 4 is optimal
- Construction gives lower bound
- Upper bound by exhaustion is easy.

4	4	2
4	З	•
•		1

- A depth of 5 is optimal
- Construction gives lower bound
- Upper bound requires more attention...
- Only case in which a set of maximum depth is not a generating set

Future Work

- Investigate other properties
- Different board sizes