A Selection of Interesting Sets

Jeffrey Beyerl

January 25, 2010

Jeffrey Beyerl A Selection of Interesting Sets

Overview

・ロン ・四 と ・ ヨ と ・ ヨ と ・

æ

• Set, Oh joyous sets

æ

▲ □ ▶ ▲ 三

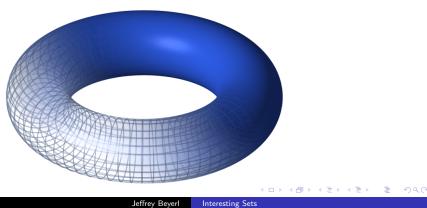
- Set, Oh joyous sets
- Some large, some small

æ

____ ▶

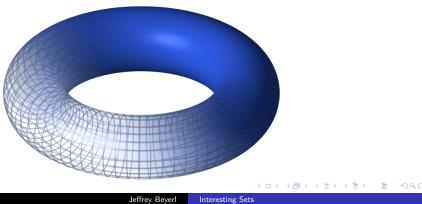
- Set, Oh joyous sets
- Some large, some small
- All of them interesting! (to me at least...)

Set #1: A Torus



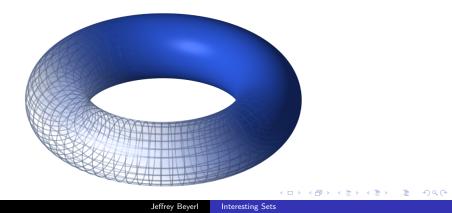
Set #1: A Torus

• A torus is the shape a doughnut takes on.



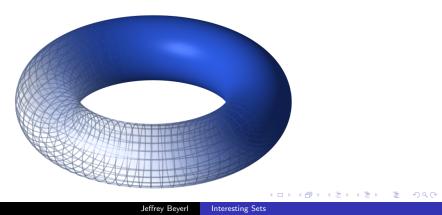
Set #1: A Torus

- A torus is the shape a doughnut takes on.
- It is homeomorphic (equivalent) to any smooth surface with one hole or handle (genus 1) such as a coffee mug.



Set #1: A Torus

- A torus is the shape a doughnut takes on.
- It is homeomorphic (equivalent) to any smooth surface with one hole or handle (genus 1) such as a coffee mug.
- Formally a torus is {ax + by|0 ≤ a, b < 1} for some fixed x, y ∈ C, equipped with an identification between opposite sides.



Set #2: A 3-torus

æ

Ξ.

・ロト ・回ト ・ ヨト ・

• A 3-torus is like a torus, but has three holes instead of one. (genus 3)

- A 3-torus is like a torus, but has three holes instead of one. (genus 3)
- It is still smooth, connected, compact, and all that good stuff.

- A 3-torus is like a torus, but has three holes instead of one. (genus 3)
- It is still smooth, connected, compact, and all that good stuff.
- Homeomorphic (equivalent) to the tables in E-7

Set #2: A 3-torus

- A 3-torus is like a torus, but has three holes instead of one. (genus 3)
- It is still smooth, connected, compact, and all that good stuff.
- Homeomorphic (equivalent) to the tables in E-7
- And not to be confused with the 3-dimensional torus $S^1 \times S^1 \times S^1$. (S^1 being a circle)

8			
	_		
н н	11 11	 	
		 10 10 10 10	

æ

《曰》《聞》《臣》《臣》

• Let
$$C_1 = [0, 1]$$

 	 н н

æ

<ロト <部ト < 注ト < 注ト

• Let
$$C_1 = [0, 1]$$

• Let $C_2 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ (that is, remove the center third)

æ

<ロト <部ト < 注ト < 注ト

Let C₁ = [0, 1]
Let C₂ = [0, ¹/₃] ∪ [²/₃, 1] (that is, remove the center third)
Let C₃ = [0, ¹/₉] ∪ [²/₉, ³/₉] ∪ [⁶/₉, ⁷/₉] ∪ [⁸/₉, ⁹/₉](remove both center thirds)

1		8
	11 11 11 11	

- Let $C_1 = [0, 1]$
- Let $C_2 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$ (that is, remove the center third)
- Let $C_3 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, \frac{9}{9}]$ (remove both center thirds)
- The cantor set is then $\bigcap_{i=1}^{\infty} C_i$.

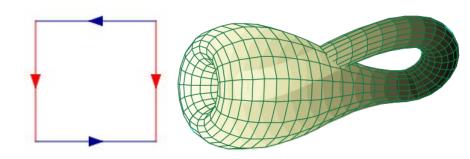
			_						
1									
			_						
						-	•		
пп	11 11	 1.0	11 11	- II	11		н	п	н –
		 1 11	11 11		11	11	11	11	11

- Let $C_1 = [0, 1]$
- Let $C_2 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$ (that is, remove the center third)
- Let $C_3 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, \frac{9}{9}]$ (remove both center thirds)
- The cantor set is then $\bigcap_{i=1}^{\infty} C_i$.
- It has Lebesgue measure zero.

< ┌? ▶ < 三 ▶

- Let $C_1 = [0, 1]$
- Let $C_2 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$ (that is, remove the center third)
- Let $C_3 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, \frac{9}{9}]$ (remove both center thirds)
- The cantor set is then $\bigcap_{i=1}^{\infty} C_i$.
- It has Lebesgue measure zero.
- But yet is uncountable. (and I'd love to know an example of some irrational number in it...)

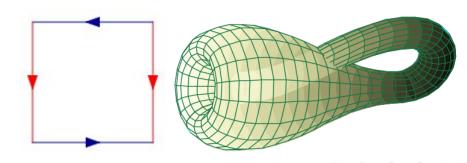
1							
				_			
пп	11 11	11 11	11 11		нп	11 11	п п
			11 11	10 10			



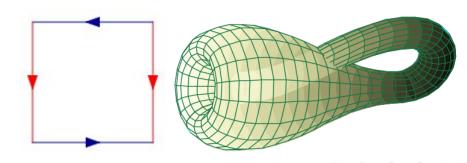
æ

₽ > < €

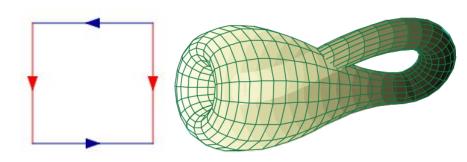
• Very similar in construction to a torus, but the identification of one pair of sides is reversed.



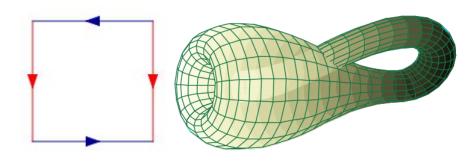
- Very similar in construction to a torus, but the identification of one pair of sides is reversed.
- Cannot be oriented (has no inside nor outside)



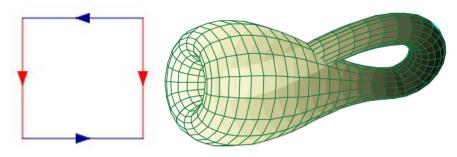
- Very similar in construction to a torus, but the identification of one pair of sides is reversed.
- Cannot be oriented (has no inside nor outside)
- Immersed in \mathbb{R}^3 as shown below. (can't be embedded though)



- Very similar in construction to a torus, but the identification of one pair of sides is reversed.
- Cannot be oriented (has no inside nor outside)
- Immersed in \mathbb{R}^3 as shown below. (can't be embedded though)
- For whatever reason people have made such immersions.



- Very similar in construction to a torus, but the identification of one pair of sides is reversed.
- Cannot be oriented (has no inside nor outside)
- Immersed in \mathbb{R}^3 as shown below. (can't be embedded though)
- For whatever reason people have made such immersions.
- ...Some of them very big



・ロト ・回ト ・ ヨト ・

글▶ 글

• Consider the recurrence in the complex plane $z_n = z_{n-1}^2 + c$, with $z_0 = 0$

э

/₽ ► < ∃ ►

- Consider the recurrence in the complex plane $z_n = z_{n-1}^2 + c$, with $z_0 = 0$
- If the recurrence is bounded, *c* is in the Mandelbrot set.

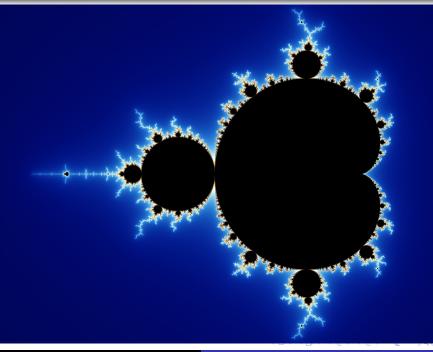
- Consider the recurrence in the complex plane $z_n = z_{n-1}^2 + c$, with $z_0 = 0$
- If the recurrence is bounded, *c* is in the Mandelbrot set.
- If the recurrence is not bounded, *c* is not in the Mandelbrot set.

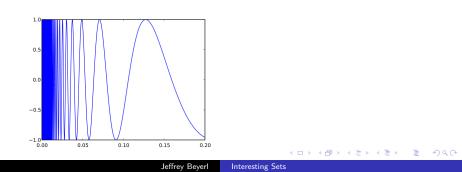
- Consider the recurrence in the complex plane $z_n = z_{n-1}^2 + c$, with $z_0 = 0$
- If the recurrence is bounded, *c* is in the Mandelbrot set.
- If the recurrence is not bounded, *c* is not in the Mandelbrot set.
- It's boundary forms a fractal.

- Consider the recurrence in the complex plane $z_n = z_{n-1}^2 + c$, with $z_0 = 0$
- If the recurrence is bounded, *c* is in the Mandelbrot set.
- If the recurrence is not bounded, *c* is not in the Mandelbrot set.
- It's boundary forms a fractal.
- A very pretty fractal

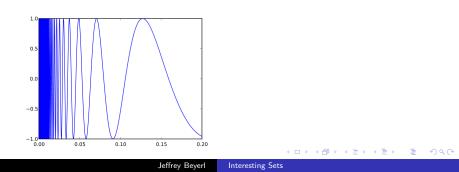
- Consider the recurrence in the complex plane $z_n = z_{n-1}^2 + c$, with $z_0 = 0$
- If the recurrence is bounded, *c* is in the Mandelbrot set.
- If the recurrence is not bounded, *c* is not in the Mandelbrot set.
- It's boundary forms a fractal.
- A very pretty fractal
- It is constrained to be near the origin of C and has an area roughly 1.5 (not known exactly).

- Consider the recurrence in the complex plane $z_n = z_{n-1}^2 + c$, with $z_0 = 0$
- If the recurrence is bounded, *c* is in the Mandelbrot set.
- If the recurrence is not bounded, *c* is not in the Mandelbrot set.
- It's boundary forms a fractal.
- A very pretty fractal
- It is constrained to be near the origin of $\mathbb C$ and has an area roughly 1.5 (not known exactly).
- YouTube video of the Mandelbrot set

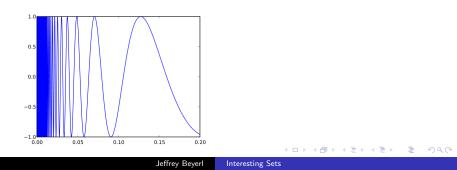




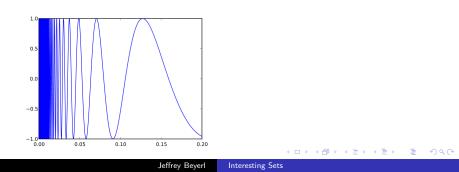
•
$$S = \{(x, y) | y = \sin(1/x), x \in \mathbb{R}\} \cup \{(0, y) | -1 \le y \le 1\} \subseteq \mathbb{R}^2$$



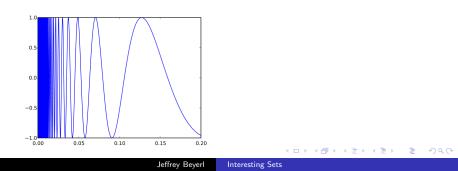
- $S = \{(x, y) | y = \sin(1/x), x \in \mathbb{R}\} \cup \{(0, y) | -1 \le y \le 1\} \subseteq \mathbb{R}^2$
- S cannot be separated into two disjoint open sets (S is connected).



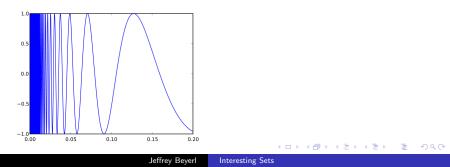
- $S = \{(x, y) | y = \sin(1/x), x \in \mathbb{R}\} \cup \{(0, y) | -1 \le y \le 1\} \subseteq \mathbb{R}^2$
- S cannot be separated into two disjoint open sets (S is connected).
- There is no path (continuous function with domain [0,1] to S) connecting (0,0) and any (x, y) with x > 0.



- $S = \{(x, y) | y = \sin(1/x), x \in \mathbb{R}\} \cup \{(0, y) | -1 \le y \le 1\} \subseteq \mathbb{R}^2$
- S cannot be separated into two disjoint open sets (S is connected).
- There is no path (continuous function with domain [0,1] to S) connecting (0,0) and any (x, y) with x > 0.
- Called the closed topologists sine curve.



- $S = \{(x, y) | y = \sin(1/x), x \in \mathbb{R}\} \cup \{(0, y) | -1 \le y \le 1\} \subseteq \mathbb{R}^2$
- S cannot be separated into two disjoint open sets (S is connected).
- There is no path (continuous function with domain [0,1] to S) connecting (0,0) and any (x, y) with x > 0.
- Called the closed topologists sine curve.
- It is compact, not locally connected, and has Lebesgue measure zero in the plane.



Set #7: (a,b)

・ロン ・部 と ・ ヨン ・ ヨン …

æ

• Ordered pairs are actually sets.

A∄ ▶ ∢ ∃=

- Ordered pairs are actually sets.
- {*a*, *b*} doesn't work because we must be able to distinguish between *a* and *b*

- Ordered pairs are actually sets.
- {*a*, *b*} doesn't work because we must be able to distinguish between *a* and *b*
- $(a, b) = \{\{a\}, \{a, b\}\}.$

- Ordered pairs are actually sets.
- {*a*, *b*} doesn't work because we must be able to distinguish between *a* and *b*
- $(a, b) = \{\{a\}, \{a, b\}\}.$
- Any *n*-tuple $(a_1, a_2, ..., a_n)$ can be written like this.

- Ordered pairs are actually sets.
- {*a*, *b*} doesn't work because we must be able to distinguish between *a* and *b*
- $(a, b) = \{\{a\}, \{a, b\}\}.$
- Any *n*-tuple $(a_1, a_2, ..., a_n)$ can be written like this.
- In particular a_k is the element in the set of size k that is not in the set of size k 1.

・ロン ・部 と ・ ヨン ・ ヨン …

æ

• What is the number 5, really?

<ロト <回ト < 回

æ

- What is the number 5, really?
- Delving into the rigorous, underpinnings we see that there is no natural concept of a number. (By "we" I mean the giants such as Russel and

Cantor. Numbers seem fairly natural to me...)

- What is the number 5, really?
- Delving into the rigorous, underpinnings we see that there is no natural concept of a number. (By "we" I mean the giants such as Russel and Cantor. Numbers seem fairly natural to me...)
- So 5 is really an equivalence class of all sets in bijection with {*a*, *b*, *c*, *d*, *e*}.

- What is the number 5, really?
- Delving into the rigorous, underpinnings we see that there is no natural concept of a number. (By "we" I mean the giants such as Russel and Cantor. Numbers seem fairly natural to me...)
- So 5 is really an equivalence class of all sets in bijection with {*a*, *b*, *c*, *d*, *e*}.
- (And by the way equivalence classes are really sets).

- What is the number 5, really?
- Delving into the rigorous, underpinnings we see that there is no natural concept of a number. (By "we" I mean the giants such as Russel and Cantor. Numbers seem fairly natural to me...)
- So 5 is really an equivalence class of all sets in bijection with {*a*, *b*, *c*, *d*, *e*}.
- (And by the way equivalence classes are really sets).
- So yes, 5 is a set.

Set #9: The Long Line

æ

Ξ.

・ロト ・回ト ・ ヨト ・

• Similar to the real line \mathbb{R} , but much longer.

A∄ ▶ ∢ ∃=

- Similar to the real line \mathbb{R} , but much longer.
- To each real number r attach a copy of the interval (0,1) (That is, L := R × (0,1))

- \bullet Similar to the real line $\mathbb R,$ but much longer.
- To each real number r attach a copy of the interval (0,1) (That is, $L := \mathbb{R} \times (0,1)$)
- $(r_1, a_1) < (r_2, a_2)$ if $r_1 < r_2$ or if both $r_1 = r_2$ and $a_1 < a_2$.

- \bullet Similar to the real line $\mathbb R,$ but much longer.
- To each real number r attach a copy of the interval (0,1) (That is, $L := \mathbb{R} \times (0,1)$)
- $(r_1, a_1) < (r_2, a_2)$ if $r_1 < r_2$ or if both $r_1 = r_2$ and $a_1 < a_2$.
- Same cardinality of \mathbb{R} , $|L| = \mathbb{R}$

- \bullet Similar to the real line $\mathbb R,$ but much longer.
- To each real number r attach a copy of the interval (0,1)(That is, $L := \mathbb{R} \times (0,1)$)
- $(r_1, a_1) < (r_2, a_2)$ if $r_1 < r_2$ or if both $r_1 = r_2$ and $a_1 < a_2$.
- Same cardinality of \mathbb{R} , $|L| = \mathbb{R}$
- Locally looks just like \mathbb{R} , Globally it does not.

- \bullet Similar to the real line $\mathbb R,$ but much longer.
- To each real number r attach a copy of the interval (0,1)(That is, $L := \mathbb{R} \times (0,1)$)
- $(r_1, a_1) < (r_2, a_2)$ if $r_1 < r_2$ or if both $r_1 = r_2$ and $a_1 < a_2$.
- Same cardinality of \mathbb{R} , $|L| = \mathbb{R}$
- Locally looks just like \mathbb{R} , Globally it does not.
- For instance it is not a metric space (you cannot put a metric on *L* without destroying its structure).

Jeffrey Beyerl Interesting Sets

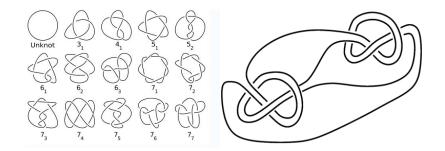
• A flat surface with one side and one boundary.

Jeffrey Beyerl Interesting Sets

- A flat surface with one side and one boundary.
- (almost) formally it is the unit square with top and bottom edges identified in opposite directions.

- A flat surface with one side and one boundary.
- (almost) formally it is the unit square with top and bottom edges identified in opposite directions.
- Very common in popular culture (compared to other mathy things)

- A flat surface with one side and one boundary.
- (almost) formally it is the unit square with top and bottom edges identified in opposite directions.
- Very common in popular culture (compared to other mathy things)
- Dean Kamen's toy country even has currency in the form of Mobius coins (a coin in the shape of a mobius strip)

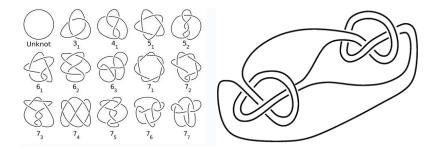


æ

⊸ ≣ ▶

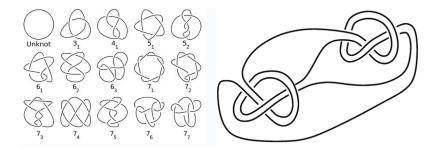
・ロト ・日下 ・ 日下

 \bullet A Knot is a circle embedded into \mathbb{R}^3



Set #11: Knots

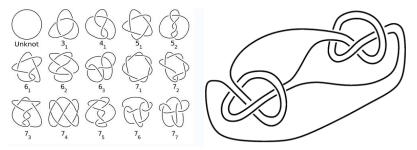
- A Knot is a circle embedded into \mathbb{R}^3
- Any two embeddings homotopic (can be continuously deformed) to each other are considered the same.



Set #11: Knots

- A Knot is a circle embedded into \mathbb{R}^3
- Any two embeddings homotopic (can be continuously deformed) to each other are considered the same.
- It seems like there is a plethora of cool stuff in knot theory.

(That I know nothing about...)



Set #12: A Multiset

æ

<ロト <部ト < 注ト < 注ト

• A multiset is a generalization of a set such that an element can appear multiple times.

- A multiset is a generalization of a set such that an element can appear multiple times.
- For example, {*a*, *a*, *a*, *b*, *b*, *c*} is a multiset where *a* appears three times.

- A multiset is a generalization of a set such that an element can appear multiple times.
- For example, {*a*, *a*, *a*, *b*, *b*, *c*} is a multiset where *a* appears three times.
- Multisets are actually sets.

- A multiset is a generalization of a set such that an element can appear multiple times.
- For example, {*a*, *a*, *a*, *b*, *b*, *c*} is a multiset where *a* appears three times.
- Multisets are actually sets.
- If M is a multiset, M = (A, m) where A contains one copy of each element of M and m is a function such that m(a) is the number of times a occurs in M.

- A multiset is a generalization of a set such that an element can appear multiple times.
- For example, {*a*, *a*, *a*, *b*, *b*, *c*} is a multiset where *a* appears three times.
- Multisets are actually sets.
- If M is a multiset, M = (A, m) where A contains one copy of each element of M and m is a function such that m(a) is the number of times a occurs in M.
- For instance, $\{a, a, a, b, b, c\} = (\{a, b, c\}, f)$ where f(a) = 3, f(b) = 2, f(c) = 1.

- A multiset is a generalization of a set such that an element can appear multiple times.
- For example, {*a*, *a*, *a*, *b*, *b*, *c*} is a multiset where *a* appears three times.
- Multisets are actually sets.
- If M is a multiset, M = (A, m) where A contains one copy of each element of M and m is a function such that m(a) is the number of times a occurs in M.
- For instance, $\{a, a, a, b, b, c\} = (\{a, b, c\}, f)$ where f(a) = 3, f(b) = 2, f(c) = 1.
- Not so much a generalization are ya now, Mr. Multiset!

Set #13: A Fuzzy set

æ

<ロト <部ト < 注ト < 注ト

• A fuzzy set is a generalization of a set such that elements can appear partially.

- A fuzzy set is a generalization of a set such that elements can appear partially.
- For example, {*a*, *b*, *c*} is a fuzzy set where *b* is graded at 50%, and c's grade is one third.
- fuzzy sets are actually sets.

- A fuzzy set is a generalization of a set such that elements can appear partially.
- For example, {*a*, *b*, *c*} is a fuzzy set where *b* is graded at 50%, and c's grade is one third.
- fuzzy sets are actually sets.
- If M is a fuzzy set, M = (A, m) where A contains a full copy of each element of M and m is a function such that m(a) is the grade of a.

- A fuzzy set is a generalization of a set such that elements can appear partially.
- For example, {*a*, *b*, *c*} is a fuzzy set where *b* is graded at 50%, and c's grade is one third.
- fuzzy sets are actually sets.
- If M is a fuzzy set, M = (A, m) where A contains a full copy of each element of M and m is a function such that m(a) is the grade of a.
- For instance, $\{a, b, c\} = (\{a, b, c\}, f)$ where $f(a) = 1, f(b) = \frac{1}{2}, f(c) = \frac{1}{3}.$

- A fuzzy set is a generalization of a set such that elements can appear partially.
- For example, {*a*, *b*, *c*} is a fuzzy set where *b* is graded at 50%, and c's grade is one third.
- fuzzy sets are actually sets.
- If M is a fuzzy set, M = (A, m) where A contains a full copy of each element of M and m is a function such that m(a) is the grade of a.
- For instance, $\{a, b, c\} = (\{a, b, c\}, f)$ where $f(a) = 1, f(b) = \frac{1}{2}, f(c) = \frac{1}{3}.$
- Not so much a generalization are ya now, Mrs. Fuzzy set!

Set #14: $f : A \rightarrow B$

æ

《曰》《聞》《臣》《臣》

• A function is actually a set (Actually an ordered triple)

- **→** → **→**

- A function is actually a set (Actually an ordered triple)
- f = (R, A, B), $R \subseteq A \times B$ where R is a valid function rule.

- A function is actually a set (Actually an ordered triple)
- f = (R, A, B), $R \subseteq A \times B$ where R is a valid function rule.
- f(a) = b iff $(a, b) \in R$

- A function is actually a set (Actually an ordered triple)
- f = (R, A, B), $R \subseteq A \times B$ where R is a valid function rule.
- f(a) = b iff $(a, b) \in R$
- However, often people leave off the codomain and/or the domain and just think of a function as a relation on A × B satisfying each a ∈ A appearing exactly once.

<ロト <部ト < 注ト < 注ト

æ

• Start with an equilateral triangle.

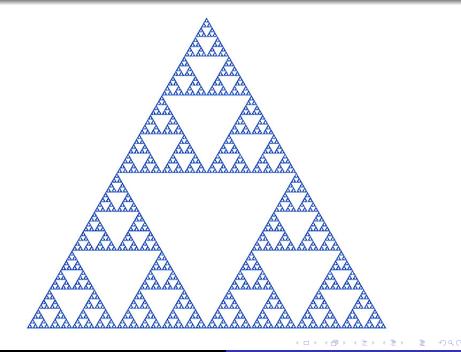
- Start with an equilateral triangle.
- Remove the triangle one quarter the size from the center.

- Start with an equilateral triangle.
- Remove the triangle one quarter the size from the center.
- From each of the three smaller triangles, again remove the center of each.

- Start with an equilateral triangle.
- Remove the triangle one quarter the size from the center.
- From each of the three smaller triangles, again remove the center of each.
- Repeat this process [countably] infinitely many times.

- Start with an equilateral triangle.
- Remove the triangle one quarter the size from the center.
- From each of the three smaller triangles, again remove the center of each.
- Repeat this process [countably] infinitely many times.
- For a triangle, this is equivalent to adjoining three copies 1/4 the size and arranging them so they meet each other at two corners.

- Start with an equilateral triangle.
- Remove the triangle one quarter the size from the center.
- From each of the three smaller triangles, again remove the center of each.
- Repeat this process [countably] infinitely many times.
- For a triangle, this is equivalent to adjoining three copies 1/4 the size and arranging them so they meet each other at two corners.
- There are other ways of generating a Sierpinski triangle as well including the Chaos Game.



References

æ

<ロト <部ト < 注ト < 注ト

• Wikipedia

æ

Э.

・ロト ・回ト ・ ヨト ・

- Wikipedia
- Topology By John Gilbert Hocking, Gail S. Young

- Wikipedia
- Topology By John Gilbert Hocking, Gail S. Young
- My memory.

- Wikipedia
- Topology By John Gilbert Hocking, Gail S. Young
- My memory.
- And all images taken from Wikipedea.

- Wikipedia
- Topology By John Gilbert Hocking, Gail S. Young
- My memory.
- And all images taken from Wikipedea.
- (And the ones that look bad are because I changed them from .svg to .jpg because I don't know how to get LATEX to display a .svg)

Set #17:

æ

Set #17:

• t

Jeffrey Beyerl Interesting Sets

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ