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Some large, some small

All of them interesting!
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Set #1: A Torus

A torus is the shape a doughnut takes on.
It is homeomorphic (equivalent) to any smooth surface with
one hole or handle (genus 1) such as a coffee mug.
Formally a torus is {ax + by |0 ≤ a, b < 1} for some fixed
x , y ∈ C, equipped with an identification between opposite
sides.
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Set #2: A 3-torus

A 3-torus is like a torus, but has three holes instead of one.
(genus 3)

It is still smooth, connected, compact, and all that good stuff.

Homeomorphic (equivalent) to the tables in E-7

And not to be confused with the 3-dimensional torus
S1 × S1 × S1. (S1 being a circle)
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Set #3: The Cantor Set

Let C1 = [0, 1]

Let C2 =
[
0, 1

3

]
∪

[
2
3 , 1

]
(that is, remove the center third)

Let C3 =
[
0, 1

9

]
∪

[
2
9 , 3

9

]
∪

[
6
9 , 7

9

]
∪

[
8
9 , 9

9

]
(remove both center

thirds)

The cantor set is then ∩∞i=1Ci .

It has Lebesgue measure zero.

But yet is uncountable. (and I’d love to know an example of
some irrational number in it...)
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Set #4: Klein Bottle

Very similar in construction to a torus, but the identification
of one pair of sides is reversed.

Cannot be oriented (has no inside nor outside)

Immersed in R3 as shown below. (can’t be embedded though)

For whatever reason people have made such immersions.

...Some of them very big

Jeffrey Beyerl Interesting Sets

http://www.kleinbottle.com/Very_Big_klein_bottles.htm
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Set #5: The Mandelbrot Set

Consider the recurrence in the complex plane zn = z2
n−1 + c ,

with z0 = 0

If the recurrence is bounded, c is in the Mandelbrot set.

If the recurrence is not bounded, c is not in the Mandelbrot
set.

It’s boundary forms a fractal.

A very pretty fractal

It is constrained to be near the origin of C and has an area
roughly 1.5 (not known exactly).

YouTube video of the Mandelbrot set

Jeffrey Beyerl Interesting Sets

http://www.youtube.com/watch?v=G_GBwuYuOOs&NR=1&feature=fvwp
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Set #6: A Connected But Not Path Connected Set

S = {(x , y)|y = sin(1/x), x ∈ R}∪{(0, y)|−1 ≤ y ≤ 1} ⊆ R2

S cannot be separated into two disjoint open sets (S is
connected).

There is no path (continuous function with domain [0, 1] to
S) connecting (0, 0) and any (x , y) with x > 0.

Called the closed topologists sine curve.

It is compact, not locally connected, and has Lebesgue
measure zero in the plane.

Jeffrey Beyerl Interesting Sets



Set #6: A Connected But Not Path Connected Set

S = {(x , y)|y = sin(1/x), x ∈ R}∪{(0, y)|−1 ≤ y ≤ 1} ⊆ R2

S cannot be separated into two disjoint open sets (S is
connected).

There is no path (continuous function with domain [0, 1] to
S) connecting (0, 0) and any (x , y) with x > 0.

Called the closed topologists sine curve.

It is compact, not locally connected, and has Lebesgue
measure zero in the plane.

Jeffrey Beyerl Interesting Sets



Set #6: A Connected But Not Path Connected Set

S = {(x , y)|y = sin(1/x), x ∈ R}∪{(0, y)|−1 ≤ y ≤ 1} ⊆ R2

S cannot be separated into two disjoint open sets (S is
connected).

There is no path (continuous function with domain [0, 1] to
S) connecting (0, 0) and any (x , y) with x > 0.

Called the closed topologists sine curve.

It is compact, not locally connected, and has Lebesgue
measure zero in the plane.

Jeffrey Beyerl Interesting Sets



Set #6: A Connected But Not Path Connected Set

S = {(x , y)|y = sin(1/x), x ∈ R}∪{(0, y)|−1 ≤ y ≤ 1} ⊆ R2

S cannot be separated into two disjoint open sets (S is
connected).

There is no path (continuous function with domain [0, 1] to
S) connecting (0, 0) and any (x , y) with x > 0.

Called the closed topologists sine curve.

It is compact, not locally connected, and has Lebesgue
measure zero in the plane.

Jeffrey Beyerl Interesting Sets



Set #6: A Connected But Not Path Connected Set

S = {(x , y)|y = sin(1/x), x ∈ R}∪{(0, y)|−1 ≤ y ≤ 1} ⊆ R2

S cannot be separated into two disjoint open sets (S is
connected).

There is no path (continuous function with domain [0, 1] to
S) connecting (0, 0) and any (x , y) with x > 0.

Called the closed topologists sine curve.

It is compact, not locally connected, and has Lebesgue
measure zero in the plane.

Jeffrey Beyerl Interesting Sets



Set #6: A Connected But Not Path Connected Set

S = {(x , y)|y = sin(1/x), x ∈ R}∪{(0, y)|−1 ≤ y ≤ 1} ⊆ R2

S cannot be separated into two disjoint open sets (S is
connected).

There is no path (continuous function with domain [0, 1] to
S) connecting (0, 0) and any (x , y) with x > 0.

Called the closed topologists sine curve.

It is compact, not locally connected, and has Lebesgue
measure zero in the plane.

Jeffrey Beyerl Interesting Sets



Set #7: (a,b)

Ordered pairs are actually sets.

{a, b} doesn’t work because we must be able to distinguish
between a and b

(a, b) = {{a}, {a, b}}.
Any n-tuple (a1, a2, ..., an) can be written like this.

In particular ak is the element in the set of size k that is not
in the set of size k − 1.
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Set #8: 5

What is the number 5, really?

Delving into the rigorous, underpinnings we see that there is
no natural concept of a number. (By “we” I mean the giants such as Russel and

Cantor. Numbers seem fairly natural to me...)

So 5 is really an equivalence class of all sets in bijection with
{a, b, c , d , e}.
(And by the way - equivalence classes are really sets).

So yes, 5 is a set.
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Set #9: The Long Line

Similar to the real line R, but much longer.

To each real number r attach a copy of the interval (0, 1)
(That is, L := R× (0, 1))

(r1, a1) < (r2, a2) if r1 < r2 or if both r1 = r2 and a1 < a2.

Same cardinality of R, |L| = R
Locally looks just like R, Globally it does not.

For instance it is not a metric space (you cannot put a metric
on L without destroying its structure).
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Set #10: A Mobius Strip

A flat surface with one side and one boundary.

(almost) formally it is the unit square with top and bottom
edges identified in opposite directions.

Very common in popular culture (compared to other mathy
things)

Dean Kamen’s toy country even has currency in the form of
Mobius coins (a coin in the shape of a mobius strip)
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Set #11: Knots

A Knot is a circle embedded into R3

Any two embeddings homotopic (can be continuously
deformed) to each other are considered the same.

It seems like there is a plethora of cool stuff in knot theory.
(That I know nothing about...)
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Set #12: A Multiset

A multiset is a generalization of a set such that an element
can appear multiple times.

For example, {a, a, a, b, b, c} is a multiset where a appears
three times.

Multisets are actually sets.

If M is a multiset, M = (A, m) where A contains one copy of
each element of M and m is a function such that m(a) is the
number of times a occurs in M.

For instance, {a, a, a, b, b, c} = ({a, b, c}, f ) where
f (a) = 3, f (b) = 2, f (c) = 1.

Not so much a generalization are ya now, Mr. Multiset!
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Set #13: A Fuzzy set

A fuzzy set is a generalization of a set such that elements can
appear partially.

For example, {a, b, c} is a fuzzy set where b is graded at 50%,
and c’s grade is one third.

fuzzy sets are actually sets.

If M is a fuzzy set, M = (A, m) where A contains a full copy
of each element of M and m is a function such that m(a) is
the grade of a.

For instance, {a, b, c} = ({a, b, c}, f ) where
f (a) = 1, f (b) = 1

2 , f (c) = 1
3 .

Not so much a generalization are ya now, Mrs. Fuzzy set!
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Set #14: f : A→ B

A function is actually a set

(Actually an ordered triple)

f = (R, A, B), R ⊆ A× B where R is a valid function rule.

f (a) = b iff (a, b) ∈ R

However, often people leave off the codomain and/or the
domain and just think of a function as a relation on A× B
satisfying each a ∈ A appearing exactly once.
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Set #15: The Sierpinski Triangle

Start with an equilateral triangle.

Remove the triangle one quarter the size from the center.

From each of the three smaller triangles, again remove the
center of each.

Repeat this process [countably] infinitely many times.

For a triangle, this is equivalent to adjoining three copies 1/4
the size and arranging them so they meet each other at two
corners.

There are other ways of generating a Sierpinski triangle as
well including the Chaos Game.
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