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Abstract

An interval graph is proper iff it has a representation in which
no interval contains another. Fred Roberts [27] characterized the
proper interval graphs as those containing no induced star K1,3.
Proskurowski and Telle [26] have studied q-proper graphs, which are
interval graphs having a representation in which no interval is prop-
erly contained in more than q other intervals. Like Roberts they
found that their classes of graphs where characterized, each by a sin-
gle minimal forbidden subgraph. This paper initiates the study of
p-improper interval graphs where no interval contains more than p

other intervals. This paper will focus on a special case of p-improper
interval graphs for which the minimal forbidden subgraphs are read-
ily described. Even in this case, it is apparent that a very wide
variety of minimal forbidden subgraphs are possible.

1 Introduction

A finite, simple graph G = (V, E) is an interval graph iff there is an assign-
ment α : v −→ Iv of vertices v of G to intervals Iv on the real line such that
vw ∈ E ⇐⇒ Iv∩Iw 6= ∅. Interval graphs appear to have first been discussed
by Hajos [15]. Now classical and well-known characterizations of interval
graphs were given by Lekkerkerker and Boland [23] in 1962 and Gilmore
and Hoffman [7] in 1964. Extensive investigations and generalizations have
since followed [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21,
22, 26, 27, 28, 29]. An interval graph is proper iff it has a representation in
which no interval contains another. Roberts [27] introduced proper inter-
val graphs and characterized them as interval graphs containing no K1,3.
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Proskurowski and Telle [26] generalized this to q-proper interval graphs,
graphs having an interval representation in which no interval is properly
contained in more than q others.

This paper will forbid containments in the opposite direction. A p-
improper interval graph is one having an interval representation in which no
interval contains more than p other intervals. The key difference between
these generalizations is that Proskurowski and Telle [26] forbid supersets
whereas here subsets are forbidden.

By a p-improper representation we mean an interval representation with
no interval containing more than p other intervals. Obviously, if G has
such a representation and H is a subgraph of G, then deleting from a
representation of G those intervals which correspond to vertices not in H

yields a representation of H . This hereditary property guarantees that the
class Ip of p-improper interval graphs has a minimal forbidden subgraph
characterization. The class of proper interval graphs (which coincides with
the class of unit interval [14]) is thus the class I0.

The Lekkerkerker-Boland theorem [23] says that chordless cycles and
asteroidal triples form a defining class of forbidden subgraphs for the class
of interval graphs. Thus we will be interested in finding minimal forbidden
subgraphs within the class of interval graphs. Let Mp denote the set of min-
imal forbidden interval subgraphs (MFISG) for the class Ip of p-improper
interval graphs. The impropriety imp(G) of G is the smallest p such that
G has a p-improper representation. Unlike the case of q-proper interval
graphs which have an essentially unique MFISG for each q, p-improper in-
terval graphs show a great diversity of MFISGs, as we will see below. Fig.
3 shows a complete list of the MFISGs for the first class I1 with p = 1 [1].
These ten MFISGs show the breadth of possibilities right at the beginning.
The star K1,p+3 is easily seen to be a MFISG for Ip. This is the easiest
case. The next easiest case is the balanced case which includes three exam-
ples from Fig. 3. We will give a formal definition of balanced here and give
a complete description of all MFISGs in this case.

2 Weight and Balance in Interval Graphs

Throughout this section G = (V, E) will denote a finite, connected, interval
graph. First we establish the notation for the central ideas of the paper.
Recall that a finite, simple graph G = (V, E) is an interval graph iff there
is an assignment α : v −→ Iv of vertices v of G to intervals Iv on the
real line such that vw ∈ E ⇐⇒ Iv ∩ Iw 6= ∅. If a representation α has
been given, ℓv and rv will denote the left and right endpoints, resp., of
the interval Iv representing v. The support of a set W ⊆ V of vertices
in a representation α is the union of all intervals Iw where w ∈ W . The
impropriety impα(z) of a vertex z of G with respect to the representation α
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Balanced, not critical Balanced, critical

2-critical, not balanced 3-critical, not balanced

Balanced, multiple intervals with positive weight

Figure 1: Illustrations of Balance and Criticality

is the number of representing intervals which lie inside Iz (not counting Iz

itself). The impropriety imp(α) of the representation α is the maximum of
the improprieties impα(z) over all vertices z of G. The impropriety imp(G)
of G is the minimum of imp(α) over all representations. A representation
which minimizes the impropriety will be called a minimal representation.
That is, a representation α is minimal iff imp(α) = imp(G).

For z ∈ V , a component of G \ {z} will be called a local component at z

(or more simply, just a component at z). A local component is exterior iff
it contains a vertex not adjacent to z.

Lemma 2.1 A vertex z in an interval graph can have at most two exterior
(local) components.

Proof. If there are three exterior components C1, C2, C3, choose vertices
a1, a2, and a3 at distance two to z with ai ∈ Ci. Then a1, a2, and a3 form
an asteroidal triple, which by [23] is forbidden in an interval graph.

A vertex z of G is type k iff v has exactly k exterior components. By
Lemma 2.1 k can take on only three values: 0, 1, or 2.

We now introduce a quantity which provides a lower bound on — and
sometimes an exact value for — the impropriety. Suppose z has n local
components C1, C2, C3, ..., Cn. The weight wt(z) of z is the sum of the
n − 2 smallest orders of the non-exterior local components. The weight
wt(G) of G is the maximum of the weights of its vertices. Note that the
weight is defined in terms of the graph G directly and does not depend on
any particular representation. Impropriety, on the other hand, is defined
in terms of representations of G.
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Let us consider some examples of this somewhat confusing concept. Let
X1 and X2 denote generic exterior components. Let A, B, C, D, F denote
local components with orders A = 5, B = 5, C = 5, D = 4, F = 2.

Suppose the local Excluded The counted Weight
components at z are Loc Comp orders are
X1, X2, A, B X1, X2 5+5 10
X1, X2, C, F X1, X2 5+2 7
X1, A, B X1, A 5 5
X1, C, F X1, C 2 2
A, B, C, D, F A, B 5+4+2 11
C, D, F C, D 2 2

Suppose the local Nr. of n − 2 smallest Weight
components at z are Comp. Non-Exterior

Local Comp.
X1, X2, A, B, C, D, F n = 7 A, B, C, D, F 5+5+5+4+2 = 21
X1, X2, C, F n = 4 C, F 5+2 = 7
X1, X2 n = 2 none 0
X1, A, B, C n = 4 B, C 5+5 = 10
X1, C, F n = 3 F 2
A, B, C, D, F n = 5 C, D, F 5+4+2 = 11
C, D, F n = 3 F 2
C, F n = 2 none 0
D n = 1 none 0

Theorem 2.2 If z is any vertex of an interval graph G, the impropriety
of G is at least the weight of z.

Proof. Consider any interval representation α : v → Iv of G. The
supports of the local components are themselves disjoint intervals which
lie left to right along the line. Say the local components in this ordering
are A1, A2, A3, ..., An. Then the components A2, A3, ..., An−1 must have
supports entirely inside Iz . Thus each of these local components lies in the
neighborhood of z. Hence if there are exterior components they must be A1

or An, or both. In any case, the n− 2 components A2, A3, ..., An−1 are not
exterior and thus the sum of their orders is at least wt(z). Thus we have
shown that in any representation, Iz contains at least wt(z) other intervals.
Thus the impropriety of G is at least wt(z), as desired.

Corollary 2.3 For any interval graph G, imp(G) ≥ wt(G).

G is balanced iff wt(G) = imp(G). If G is balanced, a vertex z such that
wt(z) = imp(G) is a basepoint of G. Equivalently, z is a basepoint iff G is
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11-improper 2-improper

Figure 2: Example of Instability in the Impropriety

balanced and z has maximum weight. Notice that a basepoint must have
at least three local components since a vertex with only one or two local
components has weight 0.

Theorem 2.4 If G is a connected, interval graph, then the vertices of pos-
itive weight induce a disjoint union of paths.

Proof. Suppose α is a representation of G and suppose Iv ⊆ Iw. Then
every neighbor of v is also a neighbor of w. Hence in G \ {v}, all the
neighbors of v are still connected. Hence v has only one local component,
so wt(v) = 0.

Now suppose some vertex v with wt(v) > 0 has three neighbors a, b, c

also with positive weight. Suppose α is a representation of G. We saw
above that none of the intervals Ia, Ib, or Ic can be contained in Iv. Thus
two of these intervals must exit Iv on the same side. Say, Ia and Ib exits
Iv through the right end point rv of Iv. Without loss of generality, assume
ℓa ≤ ℓb. Since no interval of positive weight can contain another, ra ≤ rb

is forced. Thus Ia ⊆ Iv ∪ Ib. But this means that any neighbor of a must
be a neighbor of either v or b. Since v and b are adjacent, it follows that a

has only one local component, and hence has wt(a) = 0, a contradiction.

3 p-critical Interval Graphs

An interval graph G is p-critical with respect to impropriety iff G has
impropriety p but every proper induced subgraph of G has impropriety
strictly less than p. Note that the concept of p-critical only makes sense
for p > 0. Clearly, a p + 1-critical graph is a MFISG for the class Ip of
p-improper interval graphs. The converse is not so clear. Fig. 2 gives an
example where the impropriety changes drastically with the removal of a
single vertex.
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4-Star 4-Star

Balanced-One Balanced-One

Balanced-Two Balanced-Two

Balanced-Three Balanced-Three

Skew-One Skew-One

Skew-Two Skew-Two

Skew-Three Skew-Three

Skew-Four Skew-Four

Connected-One Connected-One

Connected-Two Connected-Two

Figure 3: Minimal Forbidden Subgraphs for I1
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Theorem 3.1 Let z be a vertex of maximum weight in a balanced p-critical
graph G. If C is an exterior local component at z, then C consists of exactly
two vertices.

Proof. Let v be a vertex in C at distance 2 from z, and let w be a common
neighbor of v and z. Let H be the graph obtained from G by deleting all
vertices of C other than v and w. The local components at z in H are the
same as in G except that C is replaced by {v, w}. Hence the n− 2 smallest
non-exterior local components at z in H are the same as in G. Thus the
weight of z in H is the same as the weight of z in G. Since G is balanced
and C contains vertices other than v and w, then H is a proper induced
subgraph of G and hence has a strictly smaller impropriety. Thus we have

wtH(z) ≤ imp(H) < imp(G) = wtG(z) = wtH(z),

a contradiction. Hence C must be just {v, w} as desired.

Theorem 3.2 If G is balanced and p-critical, then G has exactly one base-
point.

Proof. Suppose y and z are distinct basepoints. Because G is connected,
y must belong to some local component C of z. This component must also
contain all p of the vertices whose intervals are contained in Iy. Since G

is balanced and p ≥ 1, any basepoint for G must have at least three local
components and hence at least three neighbors. Thus since exterior compo-
nents contain only 2 vertices by Lemma 3.1, C cannot be exterior. Dually,
z is contained in a local component D at y, which, dually, is not exterior.
Since z has at least three local components, there is a local component A

at z which is disjoint from C. That is, z is adjacent to vertices not adjacent
to y. But that means, D is an exterior component at y, a contradiction.

Theorem 3.3 Suppose G is balanced and p-critical. Let z be the basepoint
of G.

a) If there is at most one exterior component at z, then there are at
least two local components at z which are cliques and have maximum order
among the local components.

b) If there is no exterior component at z, then there are at least three
local components at z which are cliques and have maximum order among
the local components.

Proof. Select a minimal representation α of G. As in the proof of Theo-
rem 2.2, look at the supports of the local components. These are disjoint
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intervals, ordered from left to right. Call the leftmost and rightmost com-
ponents the side components. The other components are inner components.
By hypothesis, at most one local component can be exterior, so at least one
of the side components is non-exterior. Call such a component A. For
concreteness, suppose A in on the right side. The weight is determined
by adding the orders of the non-side components. Since α is minimal and
G is balanced, the impropriety equals the sum of the orders of the inner
components. Hence A cannot contribute to the impropriety. Now consider
v ∈ A. Since A is not exterior Iv ∩ Iz 6= ∅. Thus ℓv ≤ rz . Since A does not
contribute to the impropriety, Iv is not contained in Iz. Since A is on the
right side, this says rz < rv. Combining these inequalities, we find rz ∈ Iv

for all v ∈ A, so A is a clique.
If there are no exterior components, the above argument shows that

both the right and left side components must be cliques.
Now let A and B the side components. If one of these is exterior, by

symmetry it may be assumed to be B. Thus from the way that weight is
defined and because α is a minimal representation, it follows that A is a
component of maximum order. If there are no exterior components, then,
by symmetry, A can be assumed to have order greater than or equal to B.
Thus in either case, we can assume that A is local component of maximum
order.

Suppose x ∈ A. Since G is p-critical, it follows that removing x will
decrease the impropriety. That is, we need to find a representation of
G \ {x} which has a lower impropriety. Any representation consists of the
local components strung out in some order along Iz . Rearranging the inner
components among themselves or changing the way they are represented
will not decrease the number of intervals contained in Iz . Thus some inner
component must trade places with one of the two side components. If
exchanging an inner component for B has a helpful effect, this helpful effect
would be present even if x is left in A. That is, this move could be used
to give a representation for G with a smaller impropriety, contrary to the
minimality of α. Thus the essential move is exchanging an inner component
C for A \ {x}.

Suppose A has order m and C has order n. This exchange increases the
number of intervals contained in Iz by m−1 and decreases it by at most n.
The inequality here arises if C is not a clique, so that some of its intervals
must intersect Iz while avoiding other intervals from C. This would force
some intervals arising from C to be wholly contained in Iz .

Now n ≤ m since A has maximum order. The decrease d in impropriety
thus satisfies d = n − (m − 1) ≤ 1. Conversely, d ≥ 1 since G is p-critical.
Thus n − (m − 1) = d = 1, so n = m. And this occurs iff all intervals in C

can be moved out of Iz — that is, C is a clique.
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Thus we have shown that there must be one side component A that
has maximum order and is a clique. Moreover, there must be an inner
component C that has maximum order and is a clique. If the type is 0,
then B exists and, as shown above, B must be a clique. If it is not of
maximum order, interchanging B and C would reduce the impropriety of
the representation, contrary to the assumption that α is maximal.

4 Construction of Balanced Interval Graphs

Let z denote an isolated vertex. Let H := H1, H2, H3, . . . , Hn denote a
sequence of interval graphs. Let BAL0(H) denote the join of z with the
disjoint union of the Hi. That is, z is made adjacent to all vertices in all of
the Hi. This is clearly an interval graph: represent z by a long interval and
draw representations of the Hi in disjoint subintervals of this long interval.
A pendant P3 at z is a path xyz such that y is adjacent only to z and x

and x is adjacent only to y. If in addition the maximum order of the Hi is
at least 2, BALk(H) denotes BAL0(H) with k ≥ 1 pendant P3’s attached to
z.

Theorem 4.1 A graph G is p-critical and balanced iff
a) G is isomorphic to BAL0(H) where three of the Hi having maximum

order are cliques;
b) G is isomorphic to BAL1(H) where two of the Hi having maximum

order are cliques;
c) G is isomorphic to BAL2(H) for interval graphs Hi.

Proof. If G is p-critical and balanced, then by Theorems 3.1 and 3.3, G

has the form specified above. For the converse, suppose G has the form
specified above. It is convenient to assume that H := H1, H2, H3, . . . , Hn

is ordered so that |Hi| ≤ |Hi+1| and among the Hi of maximum order, the
cliques come last.

If k = 2, construct a representation α of G = BAL2(H) by putting the
two pendant P3’s at either ends of a long interval Iz for z. Represent the Hi

inside smaller subintervals of Iz . The weight of z in G = BAL2(H) is clearly
Σ :=

∑n

i=1
|Hi|. This is also the impropriety of z in the representation

α. Thus Σ = wt(z) ≤ wt(G) ≤ imp(G) ≤ imp(α) = Σ. Therefore,
wt(G) = imp(G), so BAL2-graphs are balanced.

To show BAL2-graphs are critical, it suffices to show that if any interval
from the representation α is removed, then the remaining intervals can be
rearranged to reduce the impropriety. An inner interval contributes directly
to the impropriety, so its removal reduces the impropriety. Thus consider a
pendant P3 xyz. If y is removed, then Hn can be moved to where Iy was.
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This decreases the impropriety by |Hn|. If x is removed, then the interval
Iy for y can be exchanged for Hn. This reduces the impropriety by |Hn|−1.
But |Hn| is maximal, and by definition of BAL2, there is a local component
with at least two vertices. Thus |Hn| − 1 > 0, so the impropriety does go
down.

If k = 1, put the pendant P3 to the left of a long interval Iz for z. Put
small intervals for Hn, all containing the right endpoint of Iz . As before,
represent the remaining Hi in smaller intervals contained in Iz. The weight
of z in G is

∑n−1

i=1
|Hi|. This is again imp(α). As in the case k = 2, this

implies BAL1-graphs are balanced.
In showing criticality, pendant P3’s and inner intervals can be treated

the same way as for k = 2. If a vertex is removed from Hn, then we can
exchange Hn for Hn−1 which is an interior clique of the same order as Hn

by hypothesis. This reduces the impropriety by 1.
If k = 0, Hn and Hn−1 go on the ends. Removing an interior interval

obviously reduces the impropriety as before. If an interval is removed from
one of the end clique components, it can be exchanged for Hn−2.
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