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Abstract

A p-improper interval graph is an interval graph that has an in-
terval representation in which no interval contains more than p other
intervals. A critical p-improper interval graph is p−1 improper when
any vertex is removed. In this paper we investigate the spectrum of
impropriety of critical p-improper interval graphs upon the removal
of a single vertex, which is informally known as the stability of the
graph.

1 Introduction

Interval graphs are a well studied class of graphs, having been classified and
investigated thoroughly in the latter half of the 1900s. Any hereditary class
of graphs necessarily has a minimal forbidden subgraph characterization,
in the case of interval graphs that characterization is cordless cycles and
asteroidal triples. Most introductory texts on graph theory such as [8] will
define the basic terminology needed. There are a number of other equivalent
characterizations throughout the literature, such as [3, 4] and [5].

Proper interval graphs were introduced and classified in [7]. The clas-
sification is quite simple: in addition to being an interval graph, merely
forbid the claw K1,3. Both q-proper [6] and p-improper [1] interval graphs
generalize this notion with 0-proper and 0-improper interval graphs being
proper interval graphs.

In the same papers as above the classification for proper and improper
interval graphs are investigated. The class of q-proper interval graphs has
a rather straightforward classification: the additional minimal forbidden
subgraph being a claw K1,3 with one of the leaves replaced with the clique
Kq+1. The classification for improper interval graphs appears to be some-
what complicated and to date has not been written down, although some
partial results have been obtained in [1] and [2].
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Figure 1: The basepoint is in black. If removed, the remaining components
are called local components. Basepoint, exterior and non-exterior depend
only on the graph. However, which local components are side components
depends on the representation.

Because of the hereditary nature of improper interval graphs, every
(p − 1)-improper interval graph is also p-improper. Oftentimes we will
want to specify a graph that is p-improper but not (p − 1)-improper, and
so we call such a graph exactly p-improper.

The basepoint of an improper interval graph, as well as exterior local
components and local components are formally defined in [1] in terms of
some technical concepts which are not needed in this paper. We provide
an informal illustration of these terms in Figure 1.

2 Instability of graphs with a fixed
impropriety

The primary focus of this paper is the notion of stability of improper in-
terval graphs. By this we are asking what impropriety can be obtained
by removing a vertex from an improper interval graph. For comparison,
consider q-proper interval graphs, which are very stable: when a vertex
from a critical exactly q-proper interval graph is removed, the result is ei-
ther 0-proper or (q − 1)-proper. This can easily be seen by considering
the minimal forbidden subgraph for q-proper interval graphs. For improper
interval graphs, it is somewhat more complicated. We formalize the notion
of stability in terms of the spectrum of impropriety below.

Definition 1. Let G be a critical p-improper interval graph. Then the spec-
trum of impropriety is the set of improprieties that can be exactly obtained
from G by the removal of a single vertex and is denoted specimp(G). The
spectrum of impropriety for the class of p-improper interval graphs is the
set of improprieties that can be exactly obtained by the removal of a single
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Figure 2: In this graph, when the light grey interval is removed, the clique
Kp−n becomes a potential side component, leaving the resulting graph ex-
actly n-improper.

vertex from some critical exactly p-improper interval graph and is denoted
specimp(p).

Note in particular that the subscript imp is meant to disassociate this
from the unrelated concept of the spectrum of a graph that consists of eigen-
values.

The theorem below illustrates the instability of improper interval graphs
by showing that given a critical p-improper interval graph, if a single ver-
tex is removed there are no meaningful bounds on the impropriety of the
resulting graph.

Theorem 2. specimp(p) = {0, 1, 2, ..., p− 1}

Proof. Given a number 0 ≤ n ≤ p − 1, we will construct a critical p-
improper interval graph from which we can remove a vertex to obtain an
exactly n-improper interval graph. Such a graph is illustrated in Figure 2
and consists of a basepoint with two exterior local components: one a P2,
and the other a K3 that is connected to a clique Kn with one edge only. One
of the other vertices in the K3 is not adjacent to the basepoint. Without
loss of generality, assume that the K3 is to the left of the basepoint, so that
we may represent its vertices as the intervals (a, b1), (a, b2), (a, b3) where
b1 < B < b2 < b3; B is the left endpoint of the basepoint. Then if C is
the leftmost endpoint of intervals representing the clique Kn, we must have
b2 < C < b3 so that the vertices in the clique are adjacent to one but not
more of the vertices in the K3. Hence, the entire clique will be contained in
the basepoint because B < C and there is more than one local component.
This is illustrated in Figure 2. The third local component is a clique Kp−n.
When the light grey vertex is removed, the graph has the representation
given on the right of the figure that is now exactly n-improper.

We also remark that the graph created in the above proof is not critical
because of the remaining vertex not connected to the basepoint. A similar
construction for n ≥ 1 using cliques of size Kn−1 and Kp−n+1 will construct
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Figure 3: In this graph, when the light grey interval is removed, the clique
Kp−n may be swapped to the right side and extended beyond the basepoint,
leaving the resulting graph exactly n-improper, for n ≤ bp2c. The resulting
graph is not critical, however, because it has two base points - one of which
could be removed and it would still be exactly n-improper.
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Figure 4: In this graph, when the light grey interval is removed, the clique
Kp−n may be swapped to the right side, leaving the resulting graph exactly
n-improper.

a critical n-improper interval graph when the other vertex in the P2 side
component is removed.

Note that the construction of a graph with full spectrum utilized exterior
local components. Exterior local components often make interval graphs
easier to analyze because they are simpler. If we do not allow exterior local
components, we can still construct graphs that give the desired spectrum.
For example, the class of graphs in Figure 3 show that the spectrum includes
{0, 1, 2, ..., bp2c}; in Figure 4 we see that it has full spectrum. These two
claims can be proven using similar methods as Theorem 2.

Turning the problem on its head, it is sometimes possible to construct
graphs with a given impropriety. For instance Figure 5 provides, for every
p ≥ 8, a class of critical p-improper interval graphs that have impropriety
7 after the removal of one vertex.
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Figure 5: In this graph, when the light grey interval is removed, the clique
Kp−6 may be swapped to the right side and extended beyond the basepoint,
leaving the resulting graph exactly 7-improper.

3 Instability of a fixed graph

At the start of the previous section we defined the spectrum of impropri-
ety for the class of p-improper interval graphs, specimp(p) as well as the
spectrum of impropriety of an individual graph G, specimp(G). In this sec-
tion we look at specimp(G). If a balanced interval graph has two exterior
local components, then specimp(G) contains only a few numbers, given by
the theorem below. If not, it is not entirely clear. We conjecture that∣∣specimp(G)

∣∣ is unbounded but rather small in comparison to p; exactly
how small (or large) is currently an open problem.

Theorem 3. Suppose G is a balanced improper interval graph with two
exterior local components. Then

∣∣specimp(G)
∣∣ ≤ 4.

Proof. Suppose G is a balanced improper interval graph with two exte-
rior local components. The fact that there are two exterior local compo-
nents means that all of the other local components are contained within
the basepoint in every interval representation. If a vertex on one of these
non-exterior local components is removed, then the impropriety decreases
by exactly one, as there are still two exterior local components keeping the
other local components contained within the basepoint in every interval
representation.

Theorem 3.1 in [1] tells us that the exterior local components themselves
are P2. The two vertices in the P2 each potentially give us another value for
specimp(G). By the symmetry of the two exterior local components, that is
all we get from the P2’s. The fourth value is from removing the only vertex
we have not yet considered, the basepoint itself.

References

[1] Jeffery J. Beyerl and Robert E. Jamison. Interval graphs with con-
tainment restrictions. In Proceedings of the Thirty-Ninth Southeastern



International Conference on Combinatorics, Graph Theory and Com-
puting, volume 191, pages 117–128, 2008.

[2] Jeffrey J. Beyerl and Wayne Wallace. Improper interval graphs and the
corresponding minimal forbidden interval subgraphs. Congr. Numer.,
225:161–169, 2015.

[3] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval
graphs. Pacific J. Math., 15:835–855, 1965.

[4] P. C. Gilmore and A. J. Hoffman. A characterization of comparability
graphs and of interval graphs. Canad. J. Math., 16:539–548, 1964.

[5] C. G. Lekkerkerker and J. Ch. Boland. Representation of a finite graph
by a set of intervals on the real line. Fund. Math., 51:45–64, 1962/1963.

[6] Andrzej Proskurowski and Jan Arne Telle. Classes of graphs with re-
stricted interval models. Discrete Math. Theor. Comput. Sci., 3(4):167–
176 (electronic), 1999.

[7] Fred S. Roberts. Indifference graphs. In Proof Techniques in Graph The-
ory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich.,
1968), pages 139–146. Academic Press, New York, 1969.

[8] Douglas B. West. Introduction to graph theory. Prentice Hall, Inc.,
Upper Saddle River, NJ, 1996.


