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Abstract

This paper concerns binary quadratic forms over F[T ]. It develops theory analogous to the

theory of binary quadratic forms over Z. Most although not all of the results are almost identical,

while some of the proofs require different techniques.

In particular, the form class group is determined when the form takes values in a principal

ideal domain, and the ideal class group (and class group isomorphism) is determined when the form

takes values in F[T ].
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Chapter 1

Introduction

Polynomial functions, such as
∑
i1,i2,...,in≥0 ai1,i2,...,inx

i1
1 · · ·xinn , have been studied since long

ago. Quadratic forms are a particular kind of polynomial equation of particular interest. A quadratic

form is a polynomial in which the total degree of each term (i1+i2+· · ·+in above) is two. Quadratic

forms have been studied in various dimensions (number of different independent variables) and over

various settings (the ring the variables take values from). In particular there is an extensive theory

for quadratic forms over Q,Qp as well as over arbitrary fields. Cassels text [1] provides an in depth

treatment of forms over Q and Qp. Chapter 15 of [5] also provide a classification of equivalent forms

and genera over Z and Zp. O’Meara’s text [7] provides a treatment of forms over fields, as well as

some theory over more general rings. Springer’s Online Reference Works [6] gives a short summary

of many of the general results.

The primary direction for this work is analogous to the material on binary quadratic forms

over Z found in [2]. Many of the theorems hold true over an arbitrary PID or more specifically F[T ],

although some of the proof methods require more attention.
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Chapter 2

Definitions and Notation

2.1 Quadratic Forms

Let A be any Principal Ideal Domain in which 2 ∈ A is a unit. A binary quadratic form, or

just form for short, is a function of the form

f(x, y) = ax2 + bxy + cy2 =
[
x y

] a b/2

b/2 c


x
y

 =: [a, b, c] ∈ A[x, y].

Above, a will occasionally be referred to as the “first coefficient” and similarly b and c

as the “second” and “third” coefficients respectively. f is said to be primitive when 〈a, b, c〉A :=

{αa + βb + γc|α, β, γ ∈ A} = A = 〈1〉A. The discriminant of f is Disc(f) = b2 − 4ac. Given

a, b,D = Disc(f), c is uniquely determined, and so f will occasionally be denoted by f = [a, b, ∗]D.

An element m ∈ A is said to be represented by f if there exists x, y ∈ A such that f(x, y) =

m. Such m is said to be properly represented by f when we also have 〈x, y〉A = 〈1〉A.

The set of all primitive forms will be denoted Q(∗) := {f |f is a primitive form}, and those

with a given discriminant Q(D) := {f |f is a primitive form, Disc(f) = D}. Further, the group

GL2(A) acts on Q(∗) and SL2(A) acts on Q(D), the set of all primitive forms of fixed discriminant,
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(see [A.1]) via the group action with operation denoted by juxtaposition and defined by

γf =

p q

r s

 f 7→ f(px+ qy, rx+ sy)

=
[
x y

]
γT

 a b/2

b/2 c

 γ
x
y



=
[
x y

]p q

r s


T  a b/2

b/2 c


p q

r s


x
y

 .
We obtain an equivalence relation: f _̂ g iff there exist γ ∈ GL2(A) such that γf = g

(see [A.2]). We say that f is properly equivalent with g if γ ∈ SL2(A), and write f v g, which is

also the equivalence relation induced by the subgroup SL2(A) acting on Q(∗) (see [A.3]). Define

Q(D)/ v:= {[f ] ∈ Q(∗)/ v |Disc(f) = D, f is primitive}.

Two forms f1, f2 with the same discriminant are said to be concordant if they can be written

as f1 = [a1, B, a2C] and f2 = [a2, B, a1C] where a1, a2, B,C ∈ A. We also define a binary operation

on concordant forms, defined by f ∗ g := [a1a2, B,C], and call it the composition of f and g.
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Chapter 3

Preliminaries

3.1 Introduction

In this chapter we lay the technical foundation and present results required for the next

chapter. All these results should hold in any principal ideal domain. In fact most will hold true

more generally, with the limiting factor being Lemma 3.2.4.

3.2 Some Lemmas On Quadratic Forms

Lemma 3.2.1 With f = [a, b, c] ∈ Q(∗), and p, q, r, s ∈ A, then

p q

r s

 f = [f(p, r), 2apq + bqr +

bps+ 2crs, f(q, s)]. (Regardless of whether or not

p q

r s

 is in GL2(A), or SL2(A) or not).
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Proof:p q

r s

 f =
[
x y

]p r

q s


 a b/2

b/2 c


p q

r s


x
y


=

[
x y

]pa+ br/2 pb/2 + rc

qa+ bs/2 qb/2 + sc


p q

r s


x
y


=

[
x y

]p2a+ bpr/2 + pbr/2 + r2c pqa+ bqr/2 + pbs/2 + rcs

pqa+ pbs/2 + qbr/2 + scr q2a+ bqs/2 + qbs/2 + s2c


x
y


=

[
x y

] ap2 + bpr + cr2 apq + bqr/2 + bps/2 + crs

apq + bqr/2 + bps/2 + crs aq2 + bqs+ cs2


x
y


=

[
x y

]f(p, r) b′/2

b′/2 f(q, s)


x
y


= [f(p, r), 2apq + bqr + bps+ 2crs, f(q, s)].

Lemma 3.2.2 m ∈ A is properly represented by f(x, y) = [a, b, c] ∈ Q(∗) if and only if there exists

b′, c′ ∈ A such that f v [m, b′, c′]. That is, f is properly equivalent to a form with m as the first

coefficient.

Proof: (⇒) Suppose f(p, r) = m with 〈p, r〉A = 〈1〉A. Then there exists q, s ∈ A such that

ps− qr = 1. So p q

r s

 f = [f(p, r), b′, f(r, s)] = [m, b′, c′],

(see [3.2.1]) so that indeed f v [m, b′, c′].

(⇐) Clearly [m, b′, c′] properly represents m. Write γf = f(px + qy, rx + sy) = [m, b′, c′],

where γ =

p q

r s

 ∈ SL2(A). Then m = f(p · 1 + q · 0, r · 1 + s · 0) = f(p, r) Now 〈p, r〉A = 〈1〉A

because ps− qr = 1. Thus f also properly represents m.

Lemma 3.2.3 Equivalent forms represent the same things. Likewise if f v g then f and g properly

represent the same elements of A.
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Proof: Suppose f and g are equivalent. Then write γf = g, γ ∈ GL2(A). If g represents m via

g(b1, b2) = m, then f represents m via
[
x′ y′

]
=
[
b1 b2

]
γ, so we have f(x′, y′) = m.

For the second part, suppose f v g, and suppose f properly represents m ∈ A. Then by

Lemma 3.2.2, we know that [m, b′, c′] v f v g for some b′, c′ ∈ A. Hence [m, b′, c′] v g, and so again

by Lemma 3.2.2 g properly represents m.

The next lemma is tricky. It is necessary for our construction of certain forms later, yet

requires a setting in which a, b ∈ A not sharing a common factor implies that 〈a, b〉A = 〈1〉A.

Lemma 3.2.4 Let M ∈ Ar {0}, and f ∈ Q(∗). Then there exists r, s ∈ A, 〈r, s〉A = 〈1〉A such that

〈f(r, s),M〉A = 〈1〉A.

Proof: We shall find r, s ∈ A with 〈r, s〉A = 〈1〉A so that 〈f(r, s),M〉A = 〈1〉A. Write M =∏
imi

∏
j pj

∏
k qk where mi, pi, qk are all irreducible, and

mi - a,

pj |a, pj - c,

qk|a, qk|c, qk - b.

There are no other possible irreducible divisors, because f is primitive. Setting r =
∏
j pj and

s =
∏
imi we are done after a little bit of work (see [A.6]).

Lemma 3.2.5 Fix M ∈ Ar {0}. Let f = [a, b, c] ∈ Q(∗). Then f is properly equivalent to a form

[a′, b′, c′] where 〈a′,M〉A = 〈1〉A.

Proof: Apply 3.2.4 to obtain a properly represented a′ with 〈a′,M〉A = 〈1〉A. Then apply Lemma

3.2.2 to place a′ as the first coefficient of f .

Lemma 3.2.6 Let D ∈ A,M ∈ Ar {0}, C1, C2 ∈ Q(D)/ v. Then there is an f1 = [a, b, c] ∈ C1 and

f2 = [a′, b′, c′] ∈ C2 such that 〈a, a′〉A = 〈1〉A, 〈aa′, N〉A = 〈1〉A and aa′ 6= 0.

Proof: Let f1 = [a, b, c] ∈ C1 and g = [α, β, γ] ∈ C2. If a = 0, replace f by a properly equivalent

form with nonzero x2 coefficient via Lemma 3.2.2. Apply Lemma 3.2.5 to f so that we may assume

〈a,M〉A = 〈1〉A. Now apply Lemma 3.2.5 to g to find g2 = [a′, b′, c′] v g with 〈a′, aM〉A = 〈1〉A.

We are now done because 〈a′, aM〉A = 〈1〉A implies 〈a, a′〉A = 〈1〉A, and both 〈a,M〉A = 〈1〉A &

〈a′, aM〉A = 〈1〉A together imply that 〈aa′,M〉A = 〈1〉A.

6



Lemma 3.2.7 If two forms f1 = [a1, b, c1], f2 = [a2, b, c2] have the same discriminant, a1a2 6= 0,

〈a1, a2〉A = 〈1〉A, and a1|c2, a2|c1, then f and g are concordant.

Proof: Write c2 = a1n1 and c1 = a2n2. Then D = b2 − 4a1a2n1 = b2 − 4a1a2n2. Hence a1a2n1 =

a1a2n2 and so n1 = n2. Define c := n1 = n2. Thus we have that f1 = [a1, b, a2c], f2 = [a2, b, a1c]

and so f1 and f2 are concordant.

We now have enough to prove the next result, which will eventually allow us to define an

operation on Q(D)/ v.

Proposition 3.2.8 Let D ∈ A, M ∈ A r {0}, C1, C2 ∈ Q(D)/ v. Then there are f1 ∈ C1 and

f2 ∈ C2 such that

f1 = [a1, B, a2C], f2 = [a2, B, a1C]

where ai, B,C ∈ A a1a2 6= 0, 〈a1, a2〉A = 〈1〉A, and 〈a1a2,M〉A = 〈1〉A. That is, there are two

concordant forms with 〈a1, a2〉A = 〈1〉A and 〈a1a2,M〉A = 〈1〉A.

Proof: As in Lemma 3.2.6, choose f1 = [a, b, c] ∈ C1, f2 = [a′, b′, c′] ∈ C2 so that 〈a, a′〉A = 〈1〉A and

〈aa′,M〉A = 〈1〉A. Choose n, n′ ∈ A so that an− a′n′ = b′−b
2 . Then write B := 2an+ b = 2a′n′ + b′

so B
2 = an+ b

2 = a′n′ + b′

2 , and C = B2−D
4aa′ ∈ A (see [A.4]). Then we compute

1 0

n 1

 f1 = [a,B, a′C], and

1 0

n 1

 f2 = [a′, B, aC]

(see [A.5]). Denote a1 = a and a2 = a′ and we are done.

Definition 3.2.9 We shall now define an operation on Q(D)/ v, represented by juxtaposition, and

defined by

C1C2 := C

where [f ∗g] ∈ C with the notation from above. That is, if f1 ∈ C1, f2 ∈ C2 are two concordant forms,

then [f1][f2] = [f1 ∗ f2].

We will prove (4.2.2) that this operation is well defined.
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Chapter 4

Main Results

4.1 Introduction

This chapter contains the main results of this paper. In the second section will determine the

Form Class Group Q(D)/ v. That is, the group of proper equivalence classes in Q(∗). We prove that

it is a group, using a method analogous to that over Z by Flath in chapter 5 of [3]. In the third section

we will specialize to F[T ] and discuss some developments new to the introduction of an independent

variable to our coefficients. In the fourth section we discuss orders and define the ideal class group.

In the fifth section we show that the two class groups are isomorphic: Q(D)/ v∼= I(O)/P (O) in a

manner analogous to Cox in section 7 of [2].

4.2 The Form Class Group

Lemma 4.2.1 If f1, f2 ∈ C ∈ Q(D)/ v are concordant, then f1 ∗ f2 = f2 ∗ f1.

Proof: This is trivial: Denote f1 = [a1, b, a2c], f2 = [a2, b, a1c]. Then f1 ∗ f2 = [a1a2, b, c] =

[a2a1, b, c] = f2 ∗ f1.

Theorem 4.2.2 Composition of classes via concordant forms defined by [a1, B, a2C]∗[a2, B, a1C] =

[a1a2, B, C] gives a well defined operation on S(D).

Proof: Let C1, C2 ∈ Q(D)/ v. Then by Proposition 3.2.8 we may choose two concordant forms

f1 ∈ C1, f2 ∈ C2, and define C1C2 = [f1 ∗ f2]. To be well defined means precisely that if g1 ∈ C1, g2 ∈
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C2 is another pair of concordant forms, that [g1 ∗ g2] = [f1 ∗ f2]. We shall prove this by considering

a series of sequentially more general cases.

Denote f1 = [a1, b, a2c], f2 = [a2, b, a1c] and g1 = [a′1, b
′, a′2c

′], g2 = [a′2, b
′, a′1c

′]. (We know

that f1 v g1 and f2 v g2).

Case 1, f1 = g1, 〈a1, a
′
2〉A = 〈1〉A: Because f1 = g1, we know that b = b′. Let γ ∈ SL2(A) such

that γf2 = g2, and write γ =

r t

s u

. Then we know γT

 a2 b/2

b/2 a1c

 γ =

 a′2 b/2

b/2 a′1c
′

, which gives

that ta′2 = −sa1c as well as some other useful equalities (see [A.7]).

Now because 〈a1, a
′
2〉A = 〈1〉A, we know that a1|t, and thus γ′ :=

 r t/a1

sa1 u

 ∈ SL2(A)

(see [A.8]).

Then we after a little work have that [g1 ∗ g2] = [f1 ∗ f2] because g1 ∗ g2 v f1 ∗ f2 via γ′ (see

[A.9]).

Case 2, b = b′, 〈a1, a
′
2〉A = 〈1〉A: We have f1 = [a1, b, a2c], f2 = [a2, b, a1c], g1 = [a′1, b, a

′
2c
′], g2 =

[a′2, b, a
′
1c
′]. Then because the discriminants are equal, we have b2 − 4a1a2c = b2 − 4a′1a

′
2c
′ so that

a1a2c = a′1a
′
2c
′. Thus a1|a′1c′, a′2|a2c, and so by Lemma 3.2.7 f1 and g2 are concordant. Thus we

may write

f1 = [a1, b, a
′
2c0], and

g2 = [a′2, b, a1c0].

Thus by applying case 1 to the two pairs of concordant forms (f1, f2) and (f1, g2) we obtain [f1∗f2] =

[f1 ∗ g2], and similarly [g2 ∗ g1] = [g2 ∗ f1] (see [A.10]). Then using the fact that ∗ is Abelian (see

[4.2.1]), and case 1

[f1 ∗ f2] = [f1 ∗ g2] = [g2 ∗ f1] = [g2 ∗ g1] = [g1 ∗ g2]

which finishes case 2.

Case 3, 〈a1a2, a
′
1a
′
2〉A = 〈1〉A: If b = b′ we are done by applying case 2. Otherwise choose n, n′ ∈ A

so that a1a2n− a′1a′2n′ = b′−b
2 . Rearranging this, we have B := b+ 2a1a2n = b′ + 2a1a2n

′. Set

F1 :=

1 a2n

0 1

 f1 = [a1, B/2, a2(a1a2n
2 + bn+ c)] v f1,

9



F2 :=

1 a1n

0 1

 f2 = [a2, B/2, a1(a1a2n
2 + bn+ c)] v f2,

G1 :=

1 a′2n
′

0 1

 g1 = [a′1, B/2, a
′
2(a′1a

′
2n
′2 + b′n′ + c′)] v g1,

G2 :=

1 a′1n
′

0 1

 g2 = [a′2, B/2, a
′
1(a′1a

′
2n
′2 + b′n′ + c′)] v g2,

H1 :=

1 n

0 1

 f1 ∗ f2 =

1 n

0 1

 [a1a2, b/2, c] = [a1a2, B/2, a1a2n
2 + bn+ c] v f1 ∗ f2, and

H2 :=

1 n′

0 1

 g1 ∗ g2 =

1 n′

0 1

 [a′1a
′
2, b
′/2, c′] = [a′1a

′
2, B/2, a

′
1a
′
2n
′2 + b′n′ + c′] v g1 ∗ g2

where the equalities are proven in (A.11), and the proper equivalence is by construction. We then

have that F1 and F2 are concordant, and F1 ∗ F2 = H1 (see [A.12]). Likewise G1 and G2 are

concordant and G1 ∗G2=H2.

Now because 〈a1a2, a
′
1a
′
2〉A = 〈1〉A, it is certainly true that 〈a1, a

′
2〉A = 〈1〉A. Thus we may

apply case 2 to F1, F2, G1, G2. In doing so we obtain that F1 ∗ F2 v G1 ∗G2. Thus,

[f1 ∗ f2] = [H1] = [F1 ∗ F2] = [G1 ∗G2] = [H2] = [g1 ∗ g2]

using the fact that H1 = F1 ∗ F2 and H2 = G1 ∗G2.

Case 4, no additional assumptions: Given f1 = [a1, b, a2c], f2 = [a2, b, a1c] and g1 = [a′1, b
′, a′2c

′],

g2 = [a′2, b
′, a′1c

′], set M := a1a2a
′
1a
′
2. Then via Proposition 3.2.8 Choose α1, α2 with 〈α1, α2〉A =

〈1〉A, 〈α1α2,M〉A = 〈1〉A, and concordant forms g′1, g
′
2 so that

f1 v g′1 = [α1, β, α2η]

f2 v g′2 = [α2, β, α1η]

Now by the fact that 〈α1α2, a1a2a
′
1a
′
2〉A = 〈1〉A, we know both 〈a1a2, α1α2〉A = 〈1〉A and

〈α1α2, a
′
1a
′
2〉A = 〈1〉A. Hence f1, f2, g′1, g

′
2 satisfy the premesis for case 3, and so f1 ∗ f2 v g′1 ∗ g′2.
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Likewise g′1, g
′
2, g1, g2 satisfy the premesis for case 3, and so g′1 ∗ g′2 v g1 ∗ g2. Thus

[f1 ∗ f2] = [g′1 ∗ g′2] = [g1 ∗ g2].

And therefore to summarize our argument, given any representatives f1, g1 ∈ C1 and f2, g2 ∈

C2 with f1 concordant with f2 and g1 concordant with g2, we have

C1C2 = [f1][f2] = [g1][g2].

That is, C1C2 is well defined.

Lemma 4.2.3 Composition of forms, and thus multiplication of elements of Q(D)/ v is associative.

Proof: By associativity in A and well definedness, we need only construct forms f1 ∈ C1, f2 ∈

C2, f3 ∈ C3 in which we can compose. By Proposition 3.2.8 choose f1 = [a1, b1, a2c1] ∈ C1, f2 =

[a2, b1, a1c1] ∈ C2. Then by Lemma 3.2.5 choose f3 = [a3, b3, c3] ∈ C3 with 〈a3, a1a2〉A = 〈1〉A.

By the fact that 〈a3, a1a2〉A = 〈1〉A choose m,n3 ∈ A so that a1a2m − a3n3 = b3−b1
2 . We

then have that a1a2m+ b1
2 = a3n3 + b3

2 . This gives us, labeling n1 := a2m,n2 := a1m, that

a1n1 +
b1
2

= a2n2 +
b1
2

= a3n3 +
b3
2

=: B.

Now we find g1 ∈ C1, g2 ∈ C2, g3 ∈ C3 by

g1 :=

1 n1

0 1

 f1 = [a1, B, δ1],

g2 :=

1 n2

0 1

 f2 = [a2, B, δ2],

g3 :=

1 n3

0 1

 f3 = [a3, B, δ3].

for appropriate (albeit messy) δ1, δ2, δ3 ∈ A where the latter equalities are derived in A.15.

The result now follows from associativity of A and the well definedness of ∗ (for more detail, see
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A.16).

Lemma 4.2.4 [f0] ∈ Q(D)/ v is an identity element, where f0 = [1, 0,−D4 ].

Proof: Let f = [a, b, c] ∈ C ∈ Q(D)/ v. Then f0 v

1 b/2

0 1

 f0 = [1, b, ac] (see [A.13]). Denote

f ′0 := [1, b, ac], and we have that f0 ∗ f = [a, b, c] = f , so that indeed [f0]C = C.

Lemma 4.2.5 Inverses exist in Q(D)/ v.

Proof: Let [a, b, c] ∈ C such that ac 6= 0 (there always exist such forms, see A.14). Then [c, b, a]

and [a, b, c] are concordant. Further, [c, b, a] /∈ C because

0 1

1 0

 [a, b, c] = [c, b, a], but

0 1

1 0

 ∈
GL2(A) − SL2(A). Thus denote C−1 as the class with [c, b, a] ∈ C−1. Then we know that f0 v

[1, b, ac], and that [a, b, c], [c, b, a] are concordant. Hence

[a, b, c] ∗ [c, b, a] = [ac, b, 1] v [1, b, ac] v f0

and we are done.

Theorem 4.2.6 Q(D)/ v is an Abelian group.

Proof: Multiplication of classes is well defined by 4.2.2. The previous lemmas give us that that

multiplication is associative, that there is an identity, and that each element has an inverse. Thus

indeed Q(D)/ v is a group. It is Abelian by 4.2.1.
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4.3 The Polynomial Ring F[T ]

We will now specialize to the polynomial ring F[T ], although several results here should hold

true in any specialization in which the induced (from being an Euclidean Domain) size function is

discrete. A form [a, b, c] will be called nearly reduced when deg(b′) < deg(a′) ≤ deg(c′) (note that

we will use the convention that deg(0) = −∞. The following lemma guarantees the existence of

nearly reduced forms in each class C ∈ Q(D)/ v.

Lemma 4.3.1 Denote f = [a, b, c] ∈ Q(∗). Then f v f ′ = [a′, b′, c′] where deg(b′) < deg(a′) ≤

deg(c′).

Proof: If b = 0 and deg(a) > deg(c), then take f ′ =

 0 1

−1 0

 f . Note that we cannot have two

of a, b, c zero lest f not be primitive unless if one of a, b, c is a unit and the other two are zero. In

this case however,

1 1

0 1

 f has two nonzero entries (see [B.1]). If a = 0 or c = 0, without loss of

generality a = 0, then f v

2 1

1 1

 f v

3 1

2 1

 f v

3 2

1 1

 f , at least one of which has nonzero

entries (see [B.2]).

So we have reduced the simple cases to the case that b 6= 0. Then if deg(a) > b and

deg(c) > b, then we are done with f ′ = f or f ′ =

 0 1

−1 0

 f . If deg(a) ≤ deg(b), then write

b = qa + r where q, r ∈ F[T ]. Then choose m := −q/2, so that for γ :=

1 m

0 1

, we have that

f v γf = [a, b2, c2] has deg(b2) < deg(a) (see [B.4]). Note that a2 = a so that a2 6= 0. If c = 0, use

the above to reduce the form to a form with all nonzero coefficients. (Note that this does not increase

the minimum degree of the nonzero coefficients). If deg(c) < deg(a), apply

 0 1

−1 0

. Otherwise

repeat this process at most min(deg(a),deg(b),deg(c))+1 times until deg(b) is less than both deg(a)

and deg(c). Note that in the case that deg(a) = 0, this will yield a form with b = 0. Note that

the quantity min(deg(a),deg(b),deg(c)) comes from the fact that we reduce the degree of b each

iteration, and min(deg(a),deg(c)) does not increase.

Proposition 4.3.2 Denote f = [a, b, c]. Let D be the discriminant of f . If deg(D) = 0, then

f v [a′, 0, c′] where deg(a′) = deg(c′) = 0.

13



Proof: Reduce f to f ′ = [a′, b′, c′] so that deg(b′) < deg(a′) ≤ deg(c′) by 4.3.1. Then 0 = deg(D) =

deg(b′2−4a′c′) = deg(a′c′) = deg(a′) + deg(c′). Thus deg(a′) = deg(c′) = 0. So we must have b = 0,

because only 0 has degree less than 0.

Theorem 4.3.3 Q(D)/ v is a finite Abelian group.

Proof: Let C ∈ Q(D)/ v, and choose f ∈ C to be a nearly reduced form. Then D = b2 − 4ac.

However, deg(b2) < deg(4ac) because f is reduced, so deg(D) = deg(ac). Hence deg(c) is bounded

by deg(c) ≤ deg(D), and so deg(a),deg(b),deg(c) ≤ deg(D). Hence for a not very sharp upper

bound,

|Q(D)/ v | ≤ |F|3 deg(D).

The Abelian group part was proven in 4.2.6.
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4.4 Orders And the Ideal Class Group In F[T ]

We will continue to specialize to F[T ], whose field of fractions is F(T ). Let D ∈ F[T ] be an

irreducible polynomial. Denote d :=
√
D. The field of fractions of F[T ][d] is F(T )(d) = F(T )[d]. We

then know that the integral closure of F[T ] in F(T )[d] is OK = F[T ][d] = F[T ]⊕ F[T ]d (see [8]). For

clarity’s sake we shall avoid using anything for K other than F(T )[d], although we shall still use the

notation OK instead of OF(T )[d]. Note that we will use d or
√
D depending on which seems more

appropriate for intuition purposes at the time interchangeably.

Definition 4.4.1 A subring {1} ⊆ O ⊆ F(T )[d] is said to be an order in F(T )[d] when O is a finitely

generated F[T ]-module, and contains a basis of F(T )[d] as a F(T )-vector space.

Lemma 4.4.2 Let O be an order in F(T )[d]. Then O is of rank 2 as a F[T ] module.

Proof: O is has no torsion because F(T )[d] has no zero divisors. By the structure theorem of

modules over principal ideal domains it is free. It is of rank at least two because it contains a basis

for F(T )[d] as an F(T ) vector space.

To show that it is of rank less than 3, Let g1, g2, g3 ∈ O ⊆ F(T )[d]. We know that F(T )[d]

is of rank 2 as an F(T ) vector space, so that there are a1, a2, a3 ∈ F(T ) not all zero so that

a1g1 + a2g2 + a3g3 = 0.

Then clearing denominators we get

a′1g1 + a′2g2 + a′3g3 = 0

where a′1, a
′
2, a
′
3 ∈ F[T ] and not all are zero. Thus g1, g2, g3 are dependent over F[T ] as well. Therefore

O is of rank less than 3, and thus exactly 2.

Lemma 4.4.3 Let a ring R with unity be a finitely generated F[T ]-submodule of F(T )[d]. Then

R ∩ F(T ) = F[T ].

Proof: Let p
q ∈ R ∩ F(T ), p, q ∈ F[T ]. Each element of R ∩ F(T ) may be represented as this, with p

and q having no common factors. Indeed assume that p and q have no common factors.

15



Then we have ∪∞i=1

〈
pn

qn

〉
F[T ]
⊆ R∩F(T ). Now R is a free F[T ] module and finitely generated.

Thus any F[T ] submodule is also finitely generated. In particular ∪∞i=1

〈
pn

qn

〉
F[T ]

is which implies

deg(q) = 0.

Thus we have that R ∩ F(T ) ⊆ F[T ]. Further, F[T ] ⊆ R because 1 ∈ R, and R is a F[T ]

module. Trivially F[T ] ⊆ F(T ) Therefore we have our result R ∩ F(T ) = F[T ].

Lemma 4.4.4 Let O be an order in F(T )[d]. Then O ⊆ OK .

Proof: Write O = 〈g1, g2〉F[T ] by 4.4.2. Thus we may write 1 = pg1 + qg2 where p, q ∈ F[T ]. Write

〈p, q〉F[T ] = 〈g〉F[T ] by the fact that F[T ] is a principle ideal domain. Then g−1 = p
g g1 + q

g g2 ∈

O ∩ F(T ) = F[T ]. Hence g ∈ F by Lemma 4.4.3. Thus without loss of generality we may choose p, q

so that g = 1. Then we may choose r, s,∈ F [T ] so that ps − qr = 1. Hence

p q

r s

 ∈ SL2(F[T ]),

and so we may choose λ := rg1 + sg2 so that 〈1, λ〉F[T ] = O.

Now O is a ring, and so λ2 ∈ O because λ ∈ O. Thus there are some a0, a1 ∈ F[T ] such

that λ2 = −a0− a1λ. Hence λ2 + a1λ+ a0 = 0, and so λ is integral over F[T ]. Hence O is contained

in the integral closure of F[T ], that is, O ⊆ OK .

Lemma 4.4.5 Let O be a subring 1 ∈ O ⊆ F(T )[d] of rank 2 as an F[T ]-submodule. Then O is an

order and can be written as 〈1, fd〉F[T ] for some f ∈ F[T ].

Proof: As in the proof of Lemma 4.4.4 we know that O = 〈1, b〉F[T ] where b ∈ O ⊆ OK . Write

b = a+ fd where a, f ∈ F[T ]. Then we have O = 〈1, b〉F[T ] = 〈1, fd〉F[T ]. Then because fd is F(T )

independent of 1, we know that 〈1, fd〉F(T ) = F(T )[d]. Hence O is an order.

Definition 4.4.6 Let a be an ideal of O. A fractional ideal of O is a nonzero O-submodule a of

F(T )[d] such that there is an a ∈ O such that aa ⊆ O. A fractional ideal a of O is said to be a

proper fractional ideal if O = {b ∈ F(T )[d]|ba ⊆ a}.

Note that any nonzero finitely generated O-submodule of F(T )[d] is a fractional ideal (See page 401

in [4]).

Proposition 4.4.7 If a is a fractional ideal of an order O, then a is an F[T ] module of rank 2.

Proof: Select a ∈ O so that aa ⊆ O. Then aa = 〈γ, λ〉F[T ] for some λ, γ ∈ O because aa is a

F[T ]-submodule of OK . Then a = a−1aa =
〈
γ
a ,

λ
a

〉
F[T ]
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Lemma 4.4.8 Let ax2 + bx+ c ⊆ F[T ][x] be the minimal polynomial for some τ ∈ F(T )[d] r F[T ].

Then O := 〈1, aτ〉F[T ] is an order of F(T )[d], and 〈1, τ〉F[T ] is a a proper fractional ideal of O.

Proof: First note that 〈1, aτ〉F[T ] =
〈

1,−b+
√
D
〉

F[T ]
=
〈

1,
√
D
〉

F[T ]
. Then because D ∈ F[T ] we

find that 〈1, aτ〉F[T ] is a free F[T ] module of rank 2 and is closed under multiplication. Hence it is

a ring containing 1 and of rank 2 as an F[T ] module and so is an order by 4.4.5.

〈1, τ〉F[T ] is a fractional ideal because F[T ] ⊆ O so that 〈1, τ〉F[T ] is a finitely generated O

module: (
〈1, τ〉F[T ]

)
O = 〈1, τ〉F[T ]O = 〈1, τ〉O .

Now we shall prove that 〈1, τ〉F[T ] is proper. To do this we must prove that

O = {b ∈ F(T )[d] : b 〈1, τ〉F[T ] ⊆ 〈1, τ〉F[T ]}. Because 〈1, τ〉F[T ] is an O-module, “⊆” is trivial.

We must prove “⊇”. Note that β 〈1, τ〉F[T ] ⊆ 〈1, τ〉F[T ] if and only if both β ∈ 〈1, τ〉F[T ] and

βτ ∈ 〈1, τ〉F[T ] if and only if there are n,m ∈ F[T ] so that β = m + nτ and a|n. This is because if

β = m+ nτ , then βτ = mτ + nτ2 = mτ − n bτ+ca = −cn
a +

(−bn
a +m

)
τ . Thus βτ ∈ 〈1, τ〉F[T ] if and

only if both cn
a ∈ F[T ] and bn

a ∈ F[T ] if and only if a|n. (⇐ is trivial, ⇒ is because with cn
a + bn

a = d

we have would n(c+ b) = da, so that a|n). The converse is trivial.

Further there are n,m ∈ F[T ] so that β = m+nτ and a|n if and only if β ∈ 〈1, aτ〉F[T ]. This

is actually quite easy once one thinks about it. For the forward implication, write β = m + n′aτ .

For the converse write β = m+ n′aτ , and then define n := n′a.

Hence 〈1, τ〉F[T ] is also proper.

The set of all fractional ideals of an order O is a monoid with the standard multiplication

of fractional ideals, and identity O. Thus we use the following standard definition.

Definition 4.4.9 A fractional ideal a of O is said to be invertible if there is another fractional ideal

b such that ab = O.

Because multiplication of fractional ideals is associative, inverses are unique. We shall denote the

inverse of a as a−1.

Proposition 4.4.10 Suppose O is an order of F(T )[d]. Let a be a fractional O-ideal. Then a is a

proper if and only if a is invertible.

Proof: (⇐) Write ab = O. We must prove that O = {b ∈ F(T )[d]|ba ⊆ a}. Because a is

an O-module, “⊆” is trivial. We must prove “⊇”. Let b ∈ F(T )[d] such that ba ⊆ a. Then

17



bO = b(ab) = (ba)b ⊆ ab = O. Thus bO ⊆ O. In particular, b = b · 1 ∈ bO ⊆ O. Hence a is proper.

(⇒) Let a be a proper fractional ideal. Then by 4.4.7 we may write a = 〈α, β〉F[T ] for some

α, β ∈ F(T )[d]. Then denoting τ := β
α we have

a = α 〈1, τ〉F(T ) .

Now let ax2 + bx+ c be the minimal polynomial of τ . (Note that τ must be of degree two over F[T ],

because 1 and τ generate a free module of rank 2 that contains F[T ])

Denote τ ′ to be the other root of ax2 + bx+ c.

Now because a is proper, we know that O = {β ∈ F(T )[d]|βa ⊆ a}. Hence by 4.4.8 we know

that O = 〈1, aτ〉F[T ], and that the order 〈1, aτ ′〉F[T ] has proper fractional ideal a′ := 〈1, τ ′〉F[T ]. We

see that these orders are actually the same, as 〈1, aτ〉F[T ] =
〈

1, −b+
√
D

2

〉
F[T ]

=
〈

1,−b+
√
D
〉

F[T ]
=〈

1, b−
√
D
〉

F[T ]
=
〈

1,−b−
√
D
〉

F[T ]
= 〈1, aτ ′〉F[T ].

We can now obtain that a−1 = a
αa′. This is because

( a
α

a′
)

a =
( a
α
〈1, τ〉F[T ]

)(
α 〈1, τ ′〉F[T ]

)
=

aα 〈1, τ〉F[T ] 〈1, τ
′〉F[T ]

α

= 〈a, aτ, aτ ′, aττ ′〉F[T ]

= 〈a, aτ, a(τ + τ ′), aττ ′〉F[T ]

= 〈a, aτ,−b, c〉F[T ]

= 〈(a, b, c), aτ〉F[T ]

= 〈1, aτ〉F[T ]

= O.

For the fourth equality consider that we know that aτ2 + bτ + c is the minimal polynomial of τ and

τ ′. Thus τ ′ is the only conjugate of τ , and so ττ ′ = N(τ) = (−1)deg(mτ (x))[τ ]mτ (x) = −b as well as

τ + τ ′ = Tr(τ) = [τ0]mτ (x) = c.

Now to move toward the ideal class group, let I(O) denote the set of all proper fractional

ideals of O, and P (O) denote the subset of all principal proper fractional ideals. Clearly O is an
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identity element of I(O) under multiplication. By 4.4.10 we have inverses for each element of I(O).

(In fact we have constructed I(O) by taking precisely those elements with inverses!). Thus I(O) is

a group if we can only show closure.

Proposition 4.4.11 I(O) is an Abelian group under multiplication.

Proof: By the above comments we need only show that if a, b ∈ I(O) then ab ∈ I(O). As in

page 402 of [4] we know that ab is a fractional ideal. Thus we need only show that it is proper.

Indeed by 4.4.10 we know that ab is proper if and only if it has an inverse. Such an inverse is

b−1a−1, as abb−1a−1 = aOa−1 = aa−1 = O. (Note that this concurrently proves that b−1a−1 must

also be proper because b−1 and a−1 are). The fact that I(O) is Abelian follows from the fact that

multiplication in F(T )[d] is commutative.

Proposition 4.4.12 P (O) is a normal subgroup under multiplication.

Proof: The fact that P (O) is a group is trivial, as (a)(b) = (ab) and (a)−1 = (a−1). (Note that

a−1 may not be in F[T ], but that is fine because it may be a fractional ideal). The fact that P (O)

is normal follows from the fact that I(O) is Abelian.

Definition 4.4.13 We can then define the ideal class group of O, I(O)/P (O) := I(O)/P (O).

Corollary 4.4.14 I(O)/P (O) is a group.

Proof: Trivial.
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4.5 The Class Group Isomorphism

Assume that D is not a square in F[T ].

There is an isomorphism between the form class group constructed in 4.2.6 and the ideal

class group mentioned in 4.4.14.

To prove this we shall construct a map from the set of primitive forms of a given discriminant,

Q(D), to the ideals of an order I(O). The order involved is 〈1, aτ〉F[T ] =
〈

1, −b+
√
D

2

〉
F[T ]

=〈
1,
√
D
〉

F[T ]
, where [a, b, c] ∈ Q(D) and τ := −b+

√
D

2a . The latter equality above is mostly obvious

(see [C.1]), although slightly surprising. This is an order by 4.4.8. Denote this order as O.

In figure 4.1, ϕ′ is the map we shall construct, which induces the isomorphism ϕ between

the two groups we are interested in. Define ϕ′(f) := 〈a, τ〉F[T ], so ϕ([f ]) =
[
〈a, τ〉F[T ]

]
Lemma 4.5.1 Let [a, b, c] ∈ Q(D)/ v. Then

〈
a, −b+

√
D

2

〉
F[T ]

(
= a

〈
1,−b+

√
D
〉

F[T ]

)
is a proper

ideal of O.

Proof: Let τ be a root of ax2 + bx+ c. In the future we will specify which root, but for this lemma

it does not matter. Because D is not a square, ax2 + bx + c is irreducible, and thus the minimal

polynomial of τ . Hence by 4.4.8 we have that 〈1, τ〉F[T ] is a proper fractional ideal of O = 〈1, aτ〉F[T ].

Now a 〈1, τ〉F[T ] ⊆ 〈1, aτ〉F[T ] and thus a 〈1, τ〉F[T ] is a ordinary ideal. (by ordinary ideal

we merely mean an ideal of O).

That is, we found that 〈1, τ〉F[T ] and thus a 〈1, τ〉F[T ] is a proper fractional ideal of O. But

because it is contained in O it is in fact a ordinary ideal.

Lemma 4.5.2 ϕ is well defined.

Both our domain and codomain are equivalence classes, and so we must verify well definedness in

both regards. So let C ∈ Q(D)/ v with representatives f, g ∈ C.

Q(D) I(O)

Q(D)/ v I(O)/P (O)

ϕ′

ϕ

[·] [·]

Figure 4.1: The constructed mapping
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Denote f = f(x, y) = [a, b, c] = ax2+bxy+cy2, g = a′x2+b′xy+c′y2. Let τ = −b+
√
D

2a , τ ′ = −b′+
√
D

2a′ .

Thus ϕ([f ]) = [〈a, τ〉F[T ]], ϕ([g]) = [〈a′, τ ′〉F[T ]]. To show well definedness and one-to-one we will

prove that f is properly equivalent to g if and only if 〈a, τ〉F[T ] is equivalent to 〈a′, τ ′〉F[T ].

That is to say that there is a γ ∈ SL2(F[T ]) such that γg = f if and only if there is a

λ ∈ F(T )[d] such that 〈a, τ〉F[T ] = λ 〈a′, τ ′〉F[T ].

We shall do this in the next four claims, of which 4.5.2 will follow as a corollary.

Claim 4.5.3 If f v g via

p q

r s

 g = f , then τ ′ =

p q

r s

 · τ (= pτ+q
rτ+s

)
.

Proof:

We shall prove that pτ+q
rτ+s is actually τ ′. We have

p q

r s

 g = f ,

p q

r s

 ∈ SL2(F[T ]),

and we will need the fact that

p q

r s


−1

f =

 s −q

−r p

 f = g. This yields a′ = f(s,−r), b′ =

−2aqs+ bpr + bps− 2cpr, and c′ = f(−q, p) (see 3.2.1, with different constants plugged in.

Now expanding pτ+q
rτ+s out we get that

pτ + q

rτ + s
=

2aqs− bps− bqr + 2cpr +
√
D(ps− qr)

2(as2 − bsr + cr2)

=
−b′ +

√
D

2a′
= τ ′

where we removed the ps− qr because ps− qr = 1 because

p q

r s

 ∈ SL2(F[T ]).
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This proves the result, although it may be noted that the first equality above is is because

pτ + q

rτ + s
=

p−b+
√
D

2a + q

r−b+
√
D

2a + s

=
p(−b+

√
D) + 2aq

r(−b+
√
D) + 2as

=
2aq − bp+ p

√
D

2as− br + r
√
D

=
2aq − bp+ p

√
D

2as− br + r
√
D

(
2as− br − r

√
D

2as− br − r
√
D

)

=
(2aq − bp)(2as− br)− rpD + (−r(2aq − bp) + p(2as− br))

√
D

(2as− br)2 − r2D)

=
4a2qs− 2abqr − 2abps+ b2pr − rp(b2 − 4ac) + (−2aqr + 2bpr + 2aps− bpr)

√
D

4a2s2 − 4abrs+ b2r2 − r2(b2 − 4ac)

=
4a2qs− 2abqr − 2abps+ b2pr − b2pr − 4acpr + (−2aqr + 2aps)

√
D

4a2s2 − 4abrs+ b2r2 − b2r2 + 4ar2c

=
4a2qs− 2abqr − 2abps− 4acpr + (−2aqr + 2aps)

√
D

4a2s2 − 4abrs+ 4ar2c

=
2a
(

2aqs− bqr − bps− 2cpr + (−qr + ps)
√
D
)

2a (2as2 − 2brs+ 2r2c)

=
2aqs− bqr − bps− 2cpr + (ps− qr)

√
D

2as2 − 2brs+ 2r2c

=
2aqs− bqr − bps− 2cpr + (ps− qr)

√
D

2 (as2 − brs+ cr2)

=
2aqs− bqr − bps− 2cpr + (ps− qr)

√
D

2 (as2 − brs+ cr2)
.

Claim 4.5.4 If

p q

r s

 τ = τ ′, then f =

p q

r s

 g. (Note that this implies that if

p q

r s

 ∈
SL2(F[T ]), then f v g, while if

p q

r s

 ∈ GL2(F[T ]), then f _̂ g.)

Proof: Consider that

a′τ ′2 + b′τ ′ + c = 0

⇒ a′
(
pτ + q

rτ + s

)2

+ b′
pτ + q

rτ + s
+ c = 0

⇒ a′(pτ + q)2 + b′(pτ + q)(rτ + s) + c′(rτ + s)2 = 0
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⇒ a′(p2τ2 + 2pqτ + q2) + b′(prτ2 + (ps+ qr)τ + qs) + c′(r2τ2 + 2rsτ + s2) = 0

⇒ (a′p2 + b′pr + c′r2)τ2 + (2a′pq + bqr + bps+ 2c′rs)τ + (a′q2 + b′qs+ c′s2) = 0

⇒ g(p, r)τ2 + (2a′pq + bqr + bps+ 2c′rs)τ + g(q, s) = 0.

So that we have that τ is a root of the polynomial g(p, r)x2 + (2a′pq+ bqr+ bps+ 2c′rs)x+ g(q, s).

Hence because ax2 + bx+ c is the minimal polynoimal of τ , [a, b, c] divides g(p, r)x2 + (2a′pq+ bqr+

bps+2c′rs)x+g(q, s). Because both of these polynomials are of degree two, we thus have that there

is a u ∈ F? so that

au = g(p, r),

bu = 2a′pq + bqr + bps+ 2c′rs, and

cu = g(q, s).

Now note that we have by applying det


p q

r s



p q

r s


−1

to

p q

r s

 τ = τ ′,

(ps− qr)τ =

 s −q

−r p

 τ ′

which gives

(ps− qr)

(
−b+

√
D

2a

)
=
−2a′pq − b′qr − b′ps− 2c′rs+ (ps− qr)

√
D

2 (a′p2 + b′pr + c′r2)
.
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because

sτ ′ − q
−rτ ′ + p

=
s−b

′+
√
D

2a′ − q
−r−b′+

√
D

2a′ + p

=
s(−b′ +

√
D)− 2a′q

−r(−b′ +
√
D) + 2a′p

=
−2a′q − b′s+ s

√
D

2a′p+ b′r − r
√
D

=
−2a′q − b′s+ s

√
D

2a′p+ b′r − r
√
D

(
2a′p+ b′r + r

√
D

2a′p+ b′r + r
√
D

)

=
(−2a′q − b′s)(2a′p+ b′r) + rsD + (r(−2a′q − b′s) + s(2a′p+ b′r))

√
D

(2a′p+ b′r)2 − r2D

=
−4a′2qp− 2a′b′qr − 2a′b′sp− b′2sr + rs(b′2 − 4a′c′) + (−2a′qr + 2a′sp)

√
D

4a′2p2 + 4a′b′rp+ b′2r2 − r2(b′2 − 4a′c′)

=
−4a′2qp− 2a′b′qr − 2a′b′sp− b′2sr + b′2sr − 4a′c′sr + (−2a′qr + 2a′sp)

√
D

4a′2p2 + 4a′b′rp+ b′2r2 − b′2r2 + 4a′r2c′

=
−4a′2qp− 2a′b′qr − 2a′b′sp− 4a′c′sr + (−2a′qr + 2a′sp)

√
D

4a′2p2 + 4a′b′rp+ 4a′r2c′

=
2a′
(
−2a′qp− b′qr − b′sp− 2c′sr + (−qr + sp)

√
D
)

2a′ (2a′p+2b′rp+ 2r2c′)

=
−2a′qp− b′qr − b′sp− 2c′sr + (sp− qr)

√
D

2a′p2 + 2b′rp+ 2r2c′

=
−2a′qp− b′qr − b′sp− 2c′sr + (sp− qr)

√
D

2 (a′p2 + b′rp+ c′r2)

=
−2a′qp− b′qr − b′sp− 2c′sr + (sp− qr)

√
D

2 (a′p2 + b′rp+ c′r2)

=
−2a′pq − b′qr − b′ps− 2c′rs+ (ps− qr)

√
D

2 (a′p2 + b′pr + c′r2)
.

Then by comparing the
√
D parts we get

ps− qr
2a

=
ps− qr

2 (a′p2 + b′pr + c′r2)
=
ps− qr
2g(p, r)

which gives

a = g(p, r).

And hence we have that u = 1.

Whence

p q

r s

 g = f by 3.2.1.
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Claim 4.5.5 If

p q

r s

 τ = τ ′ and

p q

r s

 ∈ SL2(F[T ]), then there is a λ ∈ F(T )[d] so that

〈1, τ〉F[T ] = λ 〈1, τ ′〉F[T ].

Proof: Let λ = rτ + s, and then we have

λ 〈1, τ ′〉F[T ] = λ

〈
1,
pτ + q

rτ + s

〉
F[T ]

= 〈rτ + s, pτ + q〉F[T ] = 〈1, τ〉F[T ] .

This is because for “⊇” We find that 1, τ ∈ 〈rτ + s, pτ + q〉F[T ] because

τ = (ps− qr)τ = s(pτ + q)− q(rτ + s)

1 = ps− qr = p(rτ + s)− r(pτ + q).

And that “⊆” is clear because rτ + s = s · 1 + r · τ , and likewise for pτ + q.

Claim 4.5.6 If there is a λ ∈ F(T )[d] so that 〈1, τ〉F[T ] = λ 〈1, τ ′〉F[T ], then there is a

p q

r s

 ∈
SL2(F[T ]) so that

p q

r s

 τ = τ ′.

Proof: With the fact that λ, λτ ′ ∈ 〈1, τ〉F[T ] choose p, q, r, s so that λτ ′ = pτ + q and λ = rτ + s.

Then

τ ′ =
pτ + q

rτ + s
=

p q

r s

 τ.

Now

p q

r s

must be invertible because we could likewise write τ =

a b

c d

 τ ′, in which case

we have τ =

p q

r s


a b

c d

 τ ′ so that

p q

r s


a b

c d

 = I2. Thus because

p q

r s

 is invertible,

we have

p q

r s

 ∈ GL2(F[T ]) and so by 4.5.4 we know that f _̂ g. In particular,

p q

r s

 g = f .

Then we have

−b′ +
√
D

2a′
= τ ′ =

pτ + q

rτ + s
=

2aqs− bps− bqr + 2cpr +
√
D(ps− qr)

2(as2 − bsr + cr2)
=
−b′ + (ps− qr)

√
D

2a′
,
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where we used the fact that pτ+q
rτ+s = 2aqs−bps−bqr+2cpr+

√
D(ps−qr)

2(as2−bsr+cr2) as proven in Claim 4.5.3 and the

other equalities are all by construction Next by equating the
√
D parts, we find that

1
2a′

=
ps− qr

2a′

so that ps− qr = 1 and so

p q

r s

 ∈ SL2(F[T ]).

Combining the above four claims we may obtain that f v g via γ if and only if γτ = τ ′ if

and only if 〈1, τ〉F[T ] is equivalent to 〈1, τ ′〉F[T ] in I(O)/P (O). We now have by taking the forward

implications that ϕ is well defined.

We have by taking the reverse implications that ϕ is injective. We still need to prove that

it is surjective and a homomorphism. These are the next two lemmas.

Lemma 4.5.7 ϕ is surjective.

Proof: Recall that O =
〈

1,
√
D
〉

F[T ]
. Let C′ ∈ I(O)/P (O), and [a] ∈ C′. That is, a is a proper

fractional ideal of O. By this we know that we may write a = 〈α, β〉F[T ] where α, β ∈ F(T )[d], and

α, β are F[T ] independent. Then write τ := β
α so that

a = 〈α, β〉F[T ] = α 〈1, τ〉F[T ] .

Let ax2 + bx+ c be the minimal polynomial of τ (it must be of degree 2 because α and β are F[T ]

independent). We then know that τ = −b±
√
D

2a . If τ = −b−
√
D

2a multiply ax2 + bx + c through by

negative 1 so that without loss of generality τ = −b+
√
D

2a . Then we have

ϕ([ax2 + bx+ c]) =

〈a, −b+
√
D

2

〉
F[T ]



=

a〈1,
−b+

√
D

2a

〉
F[T ]


=
[
α 〈1, τ〉F[T ]

]
= C′

because a
〈

1, −b+
√
D

2a

〉
F[T ]

= aα−1
(
α 〈1, τ〉F[T ]

)
, so that these ideals are equivalent. We have thus

constructed an element (namely, [a, b, c]) that maps to C′. Hence ϕ is surjective.
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Lemma 4.5.8 ϕ is a homomorphism of groups.

Proof: We know by 3.2.8 that given any two C1, C2 ∈ Q(D)/ v we may choose [a, b, a′c] ∈ C1,

[a′, b, ac] ∈ C2 such that 〈a, a′〉F[T ] = 〈1〉F[T ]. Then we have

ϕ′([[a, b, a′c]])ϕ′([[a′, b, ac]]) =

〈a, −b+
√
D

2

〉
F[T ]

〈a′, −b+
√
D

2

〉
F[T ]


=

〈aa′, a−b+
√
D

2
, a′
−b+

√
D

2
,

(
−b+

√
D

2

)2〉
F[T ]


=

〈aa′, −b+
√
D

2

〉
F[T ]


= ϕ′([[aa′, b, c]])

= ϕ′([[a, b, a′c]][[a′, b, ac]])

where the third equality is from C.2.

And we finally have the main result,

Theorem 4.5.9 Q(D)/ v∼= I(O)/P (O) as groups.

Proof: The previous lemma’s, and in fact everything in this section lead to this theorem.
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Chapter 5

Conclusions and Discussion

After working out many of the results from [2] over F[T ] we find that for the most part the

results are mostly the same. We did stick to the case that 2 is a unit the entire time which simplified

some proofs. It is not entirely clear what would happen in characteristic 2.

The primary difficulty in generalizing from Z is that we lose properties of the greatest

common divisor. In particular, 3.2.4 explicitly fails to hold in a general unique factorization domain.

Consider for instance any unique factorization domain which whose nontrivial generating sets have

more than two elements. Such as F[x1, x2, x3, x4]. Take the coefficients of f include at least one of

x1, x2, while M includes x3, and we shall never obtain x4 by F[x1, x2, x3, x4] combinations of M and

those elements represented by f . However, 3.2.4 and possibly A.1 are the only facts in the first part

of the theory that relies on more than a general integral domain in which 2 is a unit.

In the specialization to F[T ] we also run into the fact that we need to deal with the degree

at times. For instance, while over Z one can talk fairly easily about a unique reduced form in every

equivalence class, in F[T ] we were able to determine no such classification . However, we were able

to find a somewhat reduced form in each case (it usually is not unique).

In the latter part of the theory much notation was retained for intuition’s sake, although

some of the ideals and orders are simpler than in Z. In particular, the mapping ϕ between Q(D)/ v

and I(O)/P (O) can be stated less cumbersomely. We were also able to develop this equivalence of

Q(D)/ v and I(O)/P (O) without the need of developing any theory regarding the conductor of O

or norms.

One lingering question though regarding the previous comments, is as to whether we have
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taken the best approach toward these forms. In particular, some things may have been more clear

by dealing with the differing yet equivalent viewpoint and segregating forms ax2 + 2bxy + cy2 by

their the determinant ac− b2 instead of the discriminant.
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Appendices
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Appendix A Proofs of Random Things

Claim A.1 With f ∈ Q(∗),

p q

r s

 f := f(px + qy, rx + sy), GL2(A) acts on Q(∗) and SL2(A)

acts on Q(D).

Proof: First let us prove that 2×2 matrices over A act on the set of all binary quadratic forms. By

construction we have closure. Let f = [a, b, c] be a binary quadratic form. Clearly

1 0

0 1

 f = f .

Let

p q

r s

 ,
p2 q2

r2 s2

 be 2× 2 matrices over A. Then we have by the Associativity of matrices,


p q

r s


p2 q2

r2 s2


 f =

[
x y

]
p q

r s


p2 q2

r2 s2




T a b

c d



p q

r s


p2 q2

r2 s2



x
y



=
[
x y

]p2 q2

r2 s2


T p q

r s


T a b

c d


p q

r s


p2 q2

r2 s2


x
y



=
[
x y

]p2 q2

r2 s2


T

p q

r s


T a b

c d


p q

r s



p2 q2

r2 s2


x
y



=

p2 q2

r2 s2

 · [x y

]
p q

r s


T a b

c d


p q

r s



x
y



=

p2 q2

r2 s2



p q

r s

 f
 ,

which gives us a group action. (This is actually an action from the right. But for convenience

sake we will write it as an action from the left, and always remember that (γ1γ2)f = γ2(γ1f).

Second let us prove that GL2(A) acts on Q(∗).

The the primary difficulty here is closure. That is, to show that γf ∈ Q(∗) when γ ∈ GL2(A)

and f ∈ Q(∗). Let γ ∈ GL2(A). Then we know γ−1 ∈ GL2(A). Let f ∈ Q(∗). Then we know that

we cannot have a common factor amongst the coefficients of f . That is, we cannot write f = αg

with α ∈ A r A? and g is some form over A (g is not necessarily primitive). Relying on the fact
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that A is a PID, we know that this is if and only if. (That is, f fails to be primitive if and only if

we can write f = αg as above).

Assume for the purpose of later contradiction that γf /∈ Q(∗). Then we can write γf = αg

where α ∈ ArA?. Then

γ−1γf = γ−1αg

∴ f = αγ−1g

∴ f = αh.

where h is a binary quadratic form. But we know that f ∈ Q(∗), and so this is a contradiction.

Hence γf ∈ Q(∗). Then because SL2(A) ≤ GL2(A) we know that SL2(A) acts on Q(∗) as well.

Third let us prove that SL2(A) acts on Q(D). We now need only show that the dis-

criminant is the invariant under the action. Denote γ :=

p q

r s

 ∈ SL2(A), then consider that
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γf = [f(p, r), 2apq + bqr + bps+ 2crs, f(q, s)], so that

Disc(γf) = (2apq + bqr + bps+ 2crs)2 − 4f(p, r)f(q, s)

= 4a2p2q2 + 4abpq2r + 4abp2qs+ 4apqrs+ b2q2r2 + 2b2pqrs

+4bcqr2s+ b2p2s2 + 4bcprs2 + 4c2r2s2

−4(ap2 + bpr + cr2)(aq2 + bqs+ cs2)

= 4a2p2q2 + 4abpq2r + 4abp2qs+ 8acpqrs+ b2q2r2 + 2b2pqrs

+4bcqr2s+ b2p2s2 + 4bcprs2 + 4c2r2s2

−4a2p2q2 − 4abp2qs− 4acp2s2 − 4abpq2r − 4b2pqrs− 4bcprs2 − 4acq2r2 − 4bcqr2s− 4c2r2s2

= 8acpqrs+ b2q2r2 + b2p2s2

−4acp2s2 − 2b2pqrs− 4acq2r2

= b2q2r2 + b2p2s2 − 2b2pqrs− 4acpqrs− 4acp2s2 + 8acq2r2

= b2(q2r2 + p2s2 − 2pqrs)− 4ac(p2s2 + q2r2 − 2pqrs)

= b2(q2r2 + ps(ps− qr)− pqrs)− 4ac(p2s2 + qr(qr − ps)− pqrs)

= b2(q2r2 + ps− pqrs)− 4ac(p2s2 − qr − pqrs)

= b2(qr(qr − ps) + ps)− 4ac(ps(ps− qr)− qr)

= b2(−qr + ps)− 4ac(ps− qr)

= b2 − 4ac.

Hence the discriminant is invariant under the action by SL2(A).

Claim A.2 With f _̂ g iff there exist γ ∈ GL2(A) such that γf = g, then _̂ is an equivalence

relation.

Proof: Let f, g, h ∈ S(∗) with f _̂ g and g _̂ h.

Reflexive: Choosing γ =

1 0

0 1

 ∈ GL2(A) we have that f _̂ f .

Symmetric: We have that there is a γ ∈ GL2(A) so that γf = g. Inverting γ we then have
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γ−1g = γ−1γf = f , so that g _̂ f .

Transitive: Writing γ1f = g, γ2g = h we then have that h = γ2g = (γ1γ2)f so that f _̂ h.

Claim A.3 With f v g iff there exist γ ∈ SL2(A) such that γf = g, then v is an equivalence

relation.

Proof: Let f, g, h ∈ S(∗) with f v g and g v h.

Reflexive:

1 0

0 1

 ∈ SL2(A) so that we have f v f .

Symmetric: We have that there is a γ ∈ SL2(A) so that γf = g. Inverting γ we then have

γ−1g = γ−1γf = f . Now, det(γ−1) = 1−1 = 1 so that γ−1 ∈ SL2(A). Thus so that g v f .

Transitive: Writing γ1f = g, γ2g = h we then have that h = γ2g = (γ1γ2)f so that f v h,

because det(γ1γ2) = 1 · 1 = 1.

Claim A.4 With f = [a, b, c] ∈ Q(D), B = 2an+ b = 2a′n′ + b′, then C := B2−D
4aa′ ∈ A.

Proof: We know that D = b2 − 4ac, and B − b = 2na. Thus

B2 −D = B2 − (b2 − 4ac) = (B − b)(B + b) + 4ac = 2na(B + b) + 4ac = a(2n(B + b) + 4c).

so that a|B2 − D. Similarly a′|B2 − D. Because 〈a, a′〉A = 〈1〉A we then know that aa′|B2 − D.

4 ∈ F, and so C ∈ A.

Claim A.5 With f1 = [a, b, c], B = 2an+ b = 2a′n′ + b, then

1 n

0 1

 f = [a2, B, a1C].

Proof: First by A.4 we see that

B2 −D
4aa′

=
a(2n(B + b) + 4c)

4aa′
=

2na(2b+ 2an) + 4ac
4aa′

=
(4abn+ 4a2n2 + 4ac)

4aa′
∈ A.
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This will be C. Then by using 3.2.1 we obtain

1 n

0 1

 f = [f(1, 0), 2an+ b, f(n, 1)]

= [f(1, 0), B, an2 + bn+ c]

= [f(1, 0), B,
(4aa′)(bn+ an2 + c)

4aa′
]

= [f(1, 0), B, a′
(4abn+ 4a2n2 + 4ac)

4aa′
]

= [f(1, 0), B, a1C].

Claim A.6 With f = [a, b, c] ∈ Q(∗),r =
∏
j pj and s =

∏
imi where M =

∏
imi

∏
j pj

∏
k qk with

mi, pi, qk all irreducible, mi - a, pj |a, pj - c, and qk|a, qk|c, qk - b, then (f(r, s),M) = (1).

Proof: Consider that

f(r, s) = a

∏
j

pj

2

+ b

∏
j

pj

(∏
i

mi

)
+ c

(∏
i

mi

)2

= q1
∏
i

mi + a

∏
j

pj

2

= q2
∏
k

qk + b

∏
j

pj

(∏
i

mi

)

= q3
∏
j

pj + c

(∏
i

mi

)2

.

so that in the case of each irreducible divisor α of M , α divides precisely two terms of f(r, s) and

thus does not divide f(r, s) (the second equality uses the fact that qk|a, qk|c). Hence because no

irreducible divisor M is also an irredicuble divisor of f(r, s), we must have 〈f(r, s),M〉A = 〈1〉A.

Claim A.7 With f1 = [a1, b, a2c], f2 = [a2, b, a1c],

r t

s u

 f2 = g2,

r t

s u

 ∈ SL2(A), a1 = a′1,

a2c = a′2c
′, and 〈a1, a

′
2〉A = 〈1〉A then ta′2 = −sa1c, a2t = −sa1c

′, ua′2 = ra2 + bs, and c′r =
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uc+ bt/a1.

Proof: By inverting γ and noting that a′1 = a1 we get that,

r s

t u


 a2 b/2

b/2 a1c

 =

 a′2 b/2

b/2 a1c
′


 u −t

−s r

 ,
which gives the following four equations.

ra2 + bs/2 = ua′2 − bs/2

br

2
+ sa1c = −a′2t+

br

2

a2t+
bu

2
=
bu

2
− a1c

′s

bt/2 + uca1 = −bt/2 + a1c
′r,

which give respectively,

ua′2 = ra2 + bs

ta′2 = −sa1c

a2t = −sa1c
′

a1c
′r = uca1 + bt.

In the last, we note that t/a1 ∈ A and so we have c′r = uc+ bt/a1.

Claim A.8 With

r t

s u

 ∈ SL2(A), ta′2 = −sa1c, and 〈a1, a
′
2〉A = 〈1〉A, then

 r t/a1

sa1 u

 ∈
SL2(A).

Proof: To be in SL2(A), we must have det


 r t/a1

sa1 u


 = 1, and all the entries in A. Indeed

t/a1 ∈ A because a1|t, and so det


 r t/a1

sa1 u


 = ru− st = det


r t

s u


 = 1.
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Claim A.9 With f1 = [a1, b, a2c], f2 = [a2, b, a1c] and g1 = [a′1, b
′, a′2c

′], g2 = [a′2, b
′, a′1c

′], f1 = g1,

〈a1, a
′
2〉A = 〈1〉A, f1 v g1, f2 v g2, then g1 ∗ g2 v f1 ∗ f2.

Proof: First note that because f1 = g1 we know that a1 = a′1, and that a2c = a′2c
′. In fact, the

equivalence we want is via γ′ :=

 r t/a1

sa1 u

, by verifying that γ′(f1 ∗ f2) = g1 ∗ g2, which is to say

that  r sa1

t/a1 u


a1a2 b/2

b/2 c


 r t/a1

sa1 u

 =

a′1a′2 b/2

b/2 c′

 ,
which is equivalent to showing that

 r sa1

t/a1 u


a1a2 b/2

b/2 c

 =

a′1a′2 b/2

b/2 c′


 u −t/a1

−sa1 r

 ,
The left hand side is r sa1

t/a1 u


a1a2 b/2

b/2 c

 =

ra1a2 + bsa1/2 br/2 + sca1

a2t+ bu/2 bt/(2a1) + uc

 ,
while indeed the right hand side is

a′1a′2 b/2

b/2 c′


 u −t/a1

−sa1 r

 =

a1a
′
2 b/2

b/2 c′


 u −t/a1

−sa1 r


=

a1a
′
2u− bsa1/2 br/2− a′2t

bu/2− c′sa1 rc′ − bt/(2a1)


=

ra1a2 + bsa1 − bsa1/2 br/2 + sca1

bu/2 + a2t uc+ bt/a1 − bt/(2a1)


=

ra1a2 + bsa1/2 br/2 + sca1

bu/2 + a2t uc+ bt/(2a1)

 .
using the identies found in A.7 for the last equality. This is the same as the left hand side, and so

proves the claim.

Claim A.10 With f1 = [a1, b, a2c], f2 = [a2, b, a1c] and g1 = [a′1, b
′, a′2c

′], g2 = [a′2, b
′, a′1c

′], b = b′,
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〈a1, a
′
2〉A = 〈1〉A, f1 v g1, f2 v g2, then [g2 ∗ g1] = [g2 ∗ f1].

Proof: By comparing (g2, g1) with (g2, f1) we may apply case 1, and so this is indeed similar.

Claim A.11 With f1 = [a1, b, a2c], f2 = [a2, b, a1c] and g1 = [a′1, b
′, a′2c

′], g2 = [a′2, b
′, a′1c

′],B =

b + 2a1a2n = b′ + 2a1a2n
′, f1 v g1, f2 v g2, F1 :=

1 a2n

0 1

 f1, F2 :=

1 a1n

0 1

 f2, G1 :=

1 a′2n
′

0 1

 g1, G2 :=

1 a′1n
′

0 1

 g2, H1 :=

1 n

0 1

 f1 ∗ f2 =

1 n

0 1

 [a1a2, b/2, c], H2 :=

1 n′

0 1

 g1 ∗ g2 =

1 n′

0 1

 [a′1a
′
2, b
′/2, c′], then F1 = [a1, B/2, ∗]D, F2 = [a2, B/2, ∗]D, G1 = [a′1, B/2, ∗]D, G2 =

[a′2, B/2, ∗]D, H1 = [a1a2, B/2, ∗]D, and H2 = [a′1a
′
2, B/2, ∗]D.

Proof: The equality for F1 (and similarly G1) is because

 1 0

a2n 1


 a1 b/2

b/2 a2c


1 a2n

0 1

 =

 a1 b/2

a1a2n+ b/2 a2bn/2 + a2c


1 a2n

0 1


=

 a1 a1a2n+ b/2

a1a2n+ b/2 a1a
2
2n

2 + ba2n/2 + a2bn/2 + a2c


=

 a1 B/2

B/2 a1a
2
2n

2 + ba2n/2 + a2bn/2 + a2c


=

 a1 B/2

B/2 a1a
2
2n

2 + a2bn+ a2c


=

 a1 B/2

B/2 a2(a1a2n
2 + bn+ c)

 .
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The equalitiy for F2 (and similarly G2) is because

 1 0

a1n 1


 a2 b/2

b/2 a1c


1 a1n

0 1

 =

 a2 b/2

a1a2n+ b/2 a1bn/2 + a1c


1 a1n

0 1


=

 a2 a1a2n+ b/2

a1a2n+ b/2 a2
1a2n

2 + a1bn+ a1bn/2 + a1c


=

 a2 B/2

B/2 a1(a1a2n
2 + bn+ c)

 .

The equality for H1 (and similarly H2) is because

1 0

n 1


a1a2 b/2

b/2 c


1 n

0 1

 =

 a1a2 b/2

a1a2n+ b/2 nb/2 + c


1 n

0 1


=

 a1a2 a1a2n+ b/2

a1a2n+ b/2 a1a2n
2 + bn+ c


1 n

0 1


=

a1a2 B/2

B/2 a1a2n
2 + bn+ c

 .

Claim A.12 With F1 = [a1, B/2, a2(a1a2n
2 + bn + c)], F2 = [a2, B/2, a1(a1a2n

2 + bn + c)], H1 =

[a1a2, B/2, a1a2n
2 +bn+c], and 〈a1a2, a

′
1a
′
2〉A = 〈1〉A, then F1 and F2 are concordant, and F1∗F2 =

H1.

Proof: Denote C = a1a2n
2 + bn + c, so that F1 = [a1, B/2, a2C] and F2 = [a2, B/2, a1C]. Hence

by construction F1 and F2 are concordant. (note that a1a2 6= 0 because f1 and f2 are concordant).

Further merely by writing out what we have defined as composition we then know that F1 ∗ F2 =

[a1a2, B/2, C] = H1.

Claim A.13 With f0 = [1, 0,−D4 ], then

1 b/2

1

 f0 = [1, b, ac] and

1 −b/2

0 1

 f0 = [1,−b, ac].
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Proof: This is because 1 0

b/2 1


1 0

0 −D/4


1 b/2

0 1

 =

 1 0

b/2 −D/4


1 b/2

0 1


=

 1 b/2

b/2 b2/4−D/4


=

 1 b/2

b/2 ac

 ,
and

 1 0

−b/2 1


1 0

0 D/4


1 −b/2

0 1

 =

 1 0

−b/2 D/4


1 −b/2

0 1


=

 1 −b/2

−b/2 b2/4 +D/4


=

 1 −b/2

−b/2 ac

 .

Claim A.14 For C ∈ Q(D)/ v, there always exists a form in C with nonzero first and third coeffi-

cient.

Proof: If f = [0, b, 0] take

1 1

0 1

 f . If f = [c,−b, 0] then without loss of generality we may take

f = [0, b, c]. For f = [0, b, c] then either

1 1

0 1

 f = [a, 2a+ b, a+ b] or

1 2

0 1

 f = [a, 4a+ b, 4a+ b]

has nonzero first and third coefficient. Lastly if f = [a, 0, 0] take

1 1

0 1

 f = [a, 2a, a].

Claim A.15 With g1 :=

1 n1

0 1

 f1, g2 :=

1 n2

0 1

 f2, g3 :=

1 n3

0 1

 f3, then g1 = [a1, B, δ1],

g2 = [a2, B, δ2], g3 = [a3, B, δ3] for some appropriate δ1, δ2, δ3.
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Proof: The equality for g1 (and similarly g2) are because

 1 0

n1 1


 a1 b1/2

b1/2 a2c1


1 n1

0 1

 =

 a1 b1/2

a1n1 + b1/2 b1n1 + a2c1


1 n1

0 1


=

 a1 a1n1 + b1/2

a1n1 + b1/2 a1n
2
1 + b1n1/2 + b1n1 + a2c1


=

 a1 B/2

B/2 a1n
2
1 + b1n1/2 + b1n1 + a2c1

 .
The equality for g3 is because

 1 0

n3 1


 a3 b3/2

b3/2 c3


1 n3

0 1

 =

 a3 b3/2

a3n3 + b3/2 b3n3/2 + c3


1 n3

0 1


=

 a3 a3n3 + b3/2

a3n3 + b3/2 a3n
2
3 + b3n3/2 + b3n3/2 + c3


=

 a3 B/2

B/2 a3n
2
3 + b3n3/2 + b3n3/2 + c3

 .
Labeling δi appropriately, we have the desired equalities.

Claim A.16 With g1 = [a1, B, δ1], g2 = [a2, B, δ2], g3 = [a3, B, δ3], and 〈a3, a1a2〉A = 〈1〉A, then

g1 ∗ g2 ∗ g3 is unambiguous.

Proof: First note that D = B2− 4a1δ1 = B2− 4a2δ2 so that a1|δ2 and a2|δ1. Thus by 3.2.7 g2 and

g2 are concordant. Denote g1 ∗ g2 = [a1a2, B, ε1]. Now note that g1 ∗ g2 and g3 are concordant again

by 3.2.7 because D = B2 − 4a1a2ε1 = B2 − 4a3δ3 and 〈a1a2, a3〉A = 〈1〉A. Hence we have

(g1 ∗ g2) ∗ g3 = [a1a2a3, B, ε2].

Next we have that g2 and g3 are concordant because 〈a2, a3〉A = 〈1〉A and D = B2 −

4a2δ2 = B2 − 4a3δ3. Denote g2 ∗ g3 = [a2a3, B, ε3]. Then g1 and g2 ∗ g3 are concordant because
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〈a1, a2a3〉A = 〈1〉A and D = B2 − 4a1δ1 = B2 − 4a1a2ε3. Hence we have

g1 ∗ (g2 ∗ g3) = [a1a2a3, B, ε4].

Now, finally, ε4 = ε2 because D = B2 − 4a1a2a3ε4 = B2 − 4a1a2a3ε2. Therefore g1 ∗ g2 ∗ g3

is unambiguous.
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Appendix B Proofs of Some More Random Things

Claim B.1 With f = [a, b, c] where two of a, b, c are zero and the other is a unit, then

1 1

0 1

 f
has two nonzero entries.

Proof: Suppose that a (or c before a change of variables) is the nonzero coefficient, then

1 1

0 1

 f =

1 1

0 1

 f [a, 0, 0] = [a, 2a, a].

Suppose that b is the nonzero coefficient, then

1 1

0 1

 f =

1 1

0 1

 f [0, b, 0] = [0, b, b].

Claim B.2 With a = 0, b 6= 0, c 6= 0, one of

2 1

1 1

 f,
3 1

2 1

 f,
3 2

1 1

 f has all nonzero coeffi-

cients.

Proof: We will work out that

2 1

1 1

 f = [2b+c, 3b+2c, b+c],

3 1

2 1

 f = [2(3b+2c), 5b+4c, b+c],

3 2

1 1

 f = [3b+ c, 5b+ 2c, 2b+ c]. Then we will note that either there is no F combination of b, c to

give zero, in which case all three have nonzero entires. Or if there is, such a combination is unique,

all of these three forms do not have a coefficient in common. (each coefficient is a F combination,

and so this shows that at least one of them must have all nonzero coefficients). With that we will
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be done. 2 1

1 1

 [0, b, c] =
[
x y

]2 1

1 1


 0 b/2

b/2 c


2 1

1 1


x
y


=

[
x y

]b/2 b+ c

b/2 b/2 + c


2 1

1 1


x
y


=

[
x y

] 2b+ c 3b/2 + c

3b/2 + c b+ c


x
y

 .
= [2b+ c, 3b+ 2c, b+ c]

3 1

2 1

 [0, b, c] =
[
x y

]3 2

1 1


 0 b/2

b/2 c


3 1

2 1


x
y


=

[
x y

] b 3b/2 + 2c

b/2 b/2 + c


3 1

2 1


x
y


=

[
x y

] 6b+ 4c 5b/2 + 2c

5b/2 + 2c b+ c


x
y

 .
= [2(3b+ 2c), 5b+ 4c, b+ c]

3 2

1 1

 [0, b, c] =
[
x y

]3 1

2 1


 0 b/2

b/2 c


3 2

1 1


x
y


=

[
x y

]b/2 3b/2 + c

b/2 b+ c


3 2

1 1


x
y


=

[
x y

] 3b+ c 5b/2 + c

5b/2 + c 2b+ c


x
y

 .
= [3b+ c, 5b+ 2c, 2b+ c]
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Claim B.3 With a, b ∈ F[T ], d the square root of a squarefree element of F[T ], then 〈1, ad + b〉F(T ) =

F(T )[d].

Proof: (⊆) Trivial.

(⊇) Let γ + λd be an arbitrary element of F(T )[d]. (so γ, λ, a, b ∈ F(T )) Then γ + λd =(
λa−1

)
· (ad + b) +

(
γ − bλa−1

)
· 1.

Claim B.4 With f = [a, b, c] ∈ Q(∗), b + 2ma = r where r = 0 or deg(r) < deg(a), a, b, c,m, r ∈

F[T ] and [a2, b2, c2] =

1 m

0 1

 f , then deg(b2) < deg(a2) = deg(a).

Proof: First note that the case r = 0 is redundant but was stated for completeness sake because r

comes from the division algorithm. This is because if r = 0, deg(r) = −∞ and so deg(r) < deg(a)

anyway. (if a = 0 we already showed that we can reduce f so that a 6= 0). In any event, let us work

out that 1 m

0 1

 [a, b, c] =
[
x y

] 1 0

m 1


 a b/2

b/2 c


1 m

0 1


x
y


=

[
x y

] a b/2

b/2 + am bm/2 + c


1 m

0 1


x
y


=

[
x y

] a b/2 + am

b/2 + am bm/2 + am2 + bm/2 + c


x
y


= [a, b+ 2am, am2 + bm+ c]

= [a, r, am2 + bm+ c]

= [a2, b2, c2].

Thus a2 = a, b2 = r, so that indeed deg(b2) < deg(a2) = deg(a).

Claim B.5 There are n,m ∈ F[T ] so that β = m+ nτ and a|n iff β ∈ 〈1, aτ〉F[T ].

Proof: This is quite easy once you think about it: (⇒) Trivial: Write β = m + n′aτ . (⇐) Nearly

as trivial: Write β = m+ n′aτ , and then define n := n′a.
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Appendix C Proofs of Random Things Relating To the Class

Group Isomorphism

Claim C.1 With b ∈ F[T ], then
〈

1, −b−
√
D

2

〉
F[T ]

=
〈

1,
√
D
〉

F[T ]
.

Proof: (⊆) is trivial by noting that 2 ∈ F[T ].

(⊇): Let α + β
√
D be an arbitrary element in

〈
1,
√
D
〉

F[T ]
. Then α + β

√
D = (α + βb) ·

1 + 2β ·
(
−b+
√
D

2

)
∈
〈

1, −b+
√
D

2

〉
F[T ]

.

Claim C.2 With a, a′, b,∈ F[T ] then
〈
aa′, a−b+

√
D

2 , a′ −b+
√
D

2 ,
(
−b+
√
D

2

)2
〉

F[T ]

=
〈
aa′, −b+

√
D

2

〉
F[T ]

Proof:

(⊆): This is trivial because the latter three generators of
〈
aa′, a−b+

√
D

2 , a′ −b+
√
D

2 ,
(
−b+
√
D

2

)2
〉

F[T ]

are multiples of −b+
√
D

2 .

(⊇): Because (a, a′) = (1), we can write λa+ γa′ = 1, and thus

−b+
√
D

2
= λa

−b+
√
D

2
+ γa′

−b+
√
D

2
,

and so we have equality.
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